图:最短路径—Dijkstra算法

本文介绍了Dijkstra算法的基础知识,包括松弛函数的概念和作用。Dijkstra算法通过贪心策略,逐步找到从源点到所有顶点的最短路径。文章详细解释了算法的实现过程,并提供了C++代码示例。该算法适用于加权有向图,但不处理负权重边。最后,给出了一个求解最短路径的问题实例。

在了解DijkstraDijkstraDijkstra算法之前,我们先了解一个函数——松弛函数。
松弛函数:对边集合EEE中任意边,以w(u,v)w(u,v)w(u,v)表示顶点uuu出发到顶点vvv的边的权值,以dis[v]dis[v]dis[v]表示从起点到顶点uuu的路径权值。若存在w(u,v)w(u,v)w(u,v),使得dis[v]>dis[u]+w(u,v)dis[v]>dis[u]+w(u,v)dis[v]>dis[u]+w(u,v),则更新d[v]=d[u]+w(u,v)d[v]=d[u]+w(u,v)d[v]=d[u]+w(u,v)
松弛函数的作用就是判断是否经过某个顶点(边),可以缩短起点到终点的路径权值。

给定加权有向图,每条边的权值都是非负数。指定一个点(源点)到其余各个顶点的最短路径也称之为单源最短路径

DijkstraDijkstraDijkstra算法可以说是使用贪心思想实现的。

思想:把当前顶点到达其余所有顶点的距离都存储下来并找到最短的,然后再松弛一下再找到最短的,如此循环nnn次即可(nnn表示顶点数)。

下面我们看一个问题:求下图111到达其余顶点的最短路径

在这里插入图片描述

根据上面的思想,我们需要一个二维数组www存储图中的信息,一个一维数组disdisdis记录顶点111到达其余顶点的最短路径,一一维数组visvisvis来记录被使用过的顶点。

下面我们来模拟一下:

在这里插入图片描述
在这里插入图片描述

这就是DijkstraDijkstraDijkstra算法,我们发现它每次都是找未被使用过的顶点的disdisdis的最小值。

最常用时间复杂度(n2)(n^2)(n2),优化后可以达到(nlogn)(nlogn)(nlogn),不能解决负边问题,稀疏图需要耗费比较多的空间。

//===================================================================
int n, m; // n表示点数   m表示边数
int dis[510];    //顶点到i的最短距离
int w[510][510];  //顶点i到j的边的距离
bool vis[510];    //表示顶点i是否被使用过

//===================================================================
void Dijkstra() {
    memset(dis,inf_int,sizeof dis); //初始化
    dis[1] = 0;//第一个点到自身的距离为0
    for(int i = 1; i <= n; i++){ //有n个点所以要进行n次
        int k = -1;
        for(int j = 1; j <= n; j++){//寻找当前最小的路径
            if(!vis[j] && (k == -1 || dis[k] > dis[j])){
                k = j;
            }
        }
        vis[k] = true;//标记当前顶点已被使用过
        for(int j = 1; j <= n; j++){//依次更新每个点所到相邻的点路径值
            dis[j] = min(dis[j], dis[k] + w[k][j]);
        }
    }
}

int main() {
    //=================================================================
    cin >> n >> m;
    memset(w, inf_int, sizeof w);
    for (int i = 1; i <= m; i++) {
        int x, y, z;
        cin >> x >> y >> z;
        w[x][y] = min(w[x][y],z);
    }
    Dijkstra();
    if(dis[n] == inf_int) cout << "-1";
    else cout << dis[n];
    //=================================================================
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

星*湖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值