在了解DijkstraDijkstraDijkstra算法之前,我们先了解一个函数——松弛函数。
松弛函数:对边集合EEE中任意边,以w(u,v)w(u,v)w(u,v)表示顶点uuu出发到顶点vvv的边的权值,以dis[v]dis[v]dis[v]表示从起点到顶点uuu的路径权值。若存在w(u,v)w(u,v)w(u,v),使得dis[v]>dis[u]+w(u,v)dis[v]>dis[u]+w(u,v)dis[v]>dis[u]+w(u,v),则更新d[v]=d[u]+w(u,v)d[v]=d[u]+w(u,v)d[v]=d[u]+w(u,v)。
松弛函数的作用就是判断是否经过某个顶点(边),可以缩短起点到终点的路径权值。
给定加权有向图,每条边的权值都是非负数。指定一个点(源点)到其余各个顶点的最短路径也称之为单源最短路径。
DijkstraDijkstraDijkstra算法可以说是使用贪心思想实现的。
思想:把当前顶点到达其余所有顶点的距离都存储下来并找到最短的,然后再松弛一下再找到最短的,如此循环nnn次即可(nnn表示顶点数)。
下面我们看一个问题:求下图111到达其余顶点的最短路径

根据上面的思想,我们需要一个二维数组www存储图中的信息,一个一维数组disdisdis记录顶点111到达其余顶点的最短路径,一一维数组visvisvis来记录被使用过的顶点。
下面我们来模拟一下:


这就是DijkstraDijkstraDijkstra算法,我们发现它每次都是找未被使用过的顶点的disdisdis的最小值。
最常用时间复杂度(n2)(n^2)(n2),优化后可以达到(nlogn)(nlogn)(nlogn),不能解决负边问题,稀疏图需要耗费比较多的空间。
//===================================================================
int n, m; // n表示点数 m表示边数
int dis[510]; //顶点到i的最短距离
int w[510][510]; //顶点i到j的边的距离
bool vis[510]; //表示顶点i是否被使用过
//===================================================================
void Dijkstra() {
memset(dis,inf_int,sizeof dis); //初始化
dis[1] = 0;//第一个点到自身的距离为0
for(int i = 1; i <= n; i++){ //有n个点所以要进行n次
int k = -1;
for(int j = 1; j <= n; j++){//寻找当前最小的路径
if(!vis[j] && (k == -1 || dis[k] > dis[j])){
k = j;
}
}
vis[k] = true;//标记当前顶点已被使用过
for(int j = 1; j <= n; j++){//依次更新每个点所到相邻的点路径值
dis[j] = min(dis[j], dis[k] + w[k][j]);
}
}
}
int main() {
//=================================================================
cin >> n >> m;
memset(w, inf_int, sizeof w);
for (int i = 1; i <= m; i++) {
int x, y, z;
cin >> x >> y >> z;
w[x][y] = min(w[x][y],z);
}
Dijkstra();
if(dis[n] == inf_int) cout << "-1";
else cout << dis[n];
//=================================================================
return 0;
}
本文介绍了Dijkstra算法的基础知识,包括松弛函数的概念和作用。Dijkstra算法通过贪心策略,逐步找到从源点到所有顶点的最短路径。文章详细解释了算法的实现过程,并提供了C++代码示例。该算法适用于加权有向图,但不处理负权重边。最后,给出了一个求解最短路径的问题实例。
4603

被折叠的 条评论
为什么被折叠?



