算法设计----递归和分治



Fibonacci数列

public static int fibonacci(int n)
{
	if(n <= 1)
	{
		return 1;
	}
	return fibonacci(n-1)+fibonacci(n-2);
}

Ackerman函数

在这里插入图片描述

排列问题

public static void perm(Object [] list,int k,int m)
{
	if(k == m)
	{
		for(int i = 0;i <= m;i++)
		{
			System.out.println(list[i]);
		}
		System.out.println();
	}

	for(int i = k;i <= m ;i++)
	{
		Mymath.swap(list,k,i);
		perm(list,k+1,m);
		Mymath.swap(list,k,i);
	}
}

整数划分问题

public static int q(int n,int m)
{
	if(n<1||m<1)
	{
		return 0;
	}
	if(n == 1||m == 1)
	{
		return 1;
	}
	if(n < m)
	{
		return q(n,n);
	}
	if(n == m)
	{
		return 1+q(n,m-1);
	}
	return q(n,m-1)+q(n-m,m);
}

合并排序

void MergeSort(int A[],int low ,int high)
{
	int middle;
	if(low < high)
	{
		middle = (low+high)/2;
		MergeSort(A,low,middle);
		MergeSort(A,middle+1,high);
		Merge(A,low,middle,high);
	}
}

void Merge(int A[],int low,int middle,int high)
{
	int i,j,k;
	int *B = new int[high-low+1];
	i = low;
	j = middle+1;
	k = low;
	while(i <= middle && j <= high)//谁大选谁
	{
		if(A[i]<=A[j])
		{
			B[k++] = A[i++];
		}else
		{
			B[k++] = A[j++];
		}
	}
	while(i <= middle)//剩下的元素
	{
		B[k++] = A[i++];
	}
	while(j <= high)
	{
		B[k++] = A[j++];
	}
	for(i = low;i <= high;i++)
	{
		A[i + first] = B[i];
	}
}


总结

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值