自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(81)
  • 收藏
  • 关注

原创 sklearn 线性回归

1 多元线性回归LinearRegression原理建模评估指标2 岭回归建模Ridge专门的选择最好alpha的交叉验证3 Lasso 的核心作用:特征选择4 多项式回归多项式回归提升模型表现1 多元线性回归LinearRegression原理线性回归是机器学习中最简单的回归算法,多元线性回归指的就是一个样本有多个特征的线性回归问题。对于一个n有 i 个特征的样本 而言,它的回归结果可以写作一个几乎人人熟悉的方程:在多元线性回归中,我们的损失函数如下定义:我们的损失函数是L2范式,即欧式距.

2021-02-18 14:36:20 334

原创 美赛数据网站

常用网址:  1、香港中文大学的数学中英对照:http://www.cmi.hku.hk/Ref/Glossary/Mat/i.htm  2、美国MCM的主页:http://www.comap.com  3、美国普查局: http://2010.census.gov/2010census/language/chinese-simplified.php  4、美国交通统计局:http://www.bts.gov  5、美国劳工统计局:http://stats.bls.gov  6、美国国家农业统计

2021-02-01 19:08:42 403

原创 模糊综合评价模型

2021-01-30 21:12:27 224

原创 MCM2012 Problem A: The Leaves of a Tree

题目:一棵树的叶子有多重?怎么能估计树的叶子(或者树的任何其它部分)的实际重量?怎样对叶子进行分类?建立一个数学模型来对叶子进行描述和分类。模型要考虑和回答下面的问题:为什么叶子具有各种形状? 叶子之间是要将相互重叠的部分最小化,以便可以最大限度的接触到阳光吗?树叶的分布以及树干和枝杈的体积影响叶子的形状吗? 就轮廓来讲,叶形 (一般特征) 是和树的轮廓以及分枝结构有关吗?你将如何估计一棵树的叶子质量?叶子的质量和树的尺寸特征(包括和外形轮廓有关的高度、质量、体积)有联系吗?除了你的一页摘

2021-01-30 11:15:49 77 1

原创 【更新10】蒙特卡罗模拟

蒙特卡罗 方法 的 应用实例1 三门问题你参加⼀档电视节⽬,节⽬组提供了ABC三扇⻔,主持⼈告诉你,其中⼀扇⻔后边有辆汽⻋,其它两扇⻔后是空的。假如你选择了B⻔,这时,主持⼈打开了C⻔,让你看到C⻔后什么都没有,然后问你要不要改选A⻔?2模拟排队问题假设某银⾏⼯作时间只有⼀个服务窗⼝,⼯作⼈员只能逐个的接待顾客。当来的顾客较多时,⼀部分顾客就需要排队等待。假设:1) 顾客到来的间隔时间服从参数为0.1的指数分布 2) 每个顾客的服务时间服从均值为10,⽅差为4的正态分布(单位为分钟,若服务时间⼩..

2021-01-28 22:44:45 59

原创 【更新7】ARCH和GARCH模型

ARCH模型(Autoregressive conditional heteroskedasticity model)全称“自回归条件异方差模型”,在现代高频金融时间序列中,数据经常出现波动性聚集的特点,但从长期来看数据是平稳的,即长期方差无条件方差)是定值,但从短期来看方差是不稳定的,我们称这种异方差为条件异方差。传统的时间序列模型如ARMA模型识别不出来这一特征。为什么引入ARCH模型?数据呈现波动聚集性(volatility clustering)长期来看时间序列平稳,短期来看不平稳,存在异方差

2021-01-27 23:05:52 2531

原创 【更新8】正态分布均值的假设检验

假设检验的步骤可以归纳如下:(1)写出原假设和备择假设;(2)在原假设成立的条件下,构造一个统计量,该统计量服从某一分布;(3)用已知的样本数据带入统计量的公式,得到一个检验值;(4)给定置信水平来得到一个接受域的区间,看检验值是否落在接受域中,或者用检验值和区间的临界值进行比较,来判断是否接受原假设(或者计算该检验值对应于其分布的p值,并将p值和指定的显著性水平比较从而来确定是否接受原假设)。例子:逐对比较法有时为了比较两种产品、两种仪器 、两种方法等的差异,我们常在相同的条件下做对

2021-01-27 23:05:17 751

原创 【更新6】Floyd算法

Floyd‐Warshall算法,中文亦称弗洛伊德算法,是解决任意两点间的最短路径的一种算法,可以正确处理无向图或有向图(可以有负权重,但不可存在负权回路)的最短路径问题。Floyd算法与迪杰斯特拉算法或贝尔曼福特算法相比,能够一次性的求出任意两点之间的最短路径,后两种算法运行一次只能计算出给定的起点和终点之间的最短路径。当然,Floyd算法计算的时间也要高于后两种算法,其算法核心的步骤由三层循环构成可通过一个路径矩阵path来记录最短路径经过的点...

2021-01-27 10:52:38 31

原创 【更新4】岭回归和lasso回归

在第七讲时,我们介绍了多元线性回归模型,估计回归系数使用的是OLS,并在最后探讨了异方差和多重共线性对于模型的影响。事实上,回归中关于自变量的选择大有门道,变量过多时可能会导致多重共线性问题造成回归系数的不显著,甚至造成OLS估计的失效。本节介绍到的岭回归和lasso回归在OLS回归模型的损失函数上加上了不同的惩罚项,该惩罚项由回归系数的函数构成,一方面,加入的惩罚项能够识别出模型中不重要的变量,对模型起到简化作用,可以看作逐步回归法的升级版;另一方面,加入的惩罚项能够让模型变得可估计,即使之前的数据

2021-01-26 22:20:16 144

原创 【更新1】用Excel绘制统计图

这里写目录标题饼图柱状(形)图条形图饼图如果类别太多不适合, 类别不超过七个。因为七个以上的扇区会使图表难以阅读。类别太少也不适合(两类),可以画的像画一样好看的(美赛)适合完整数据(一年四季),一般不完整时可以加其他任何数据值都不为零或小于零。注意: 不用在图中加入标题,我们一般在论文的正文中加入(表上图下)。另外,画出来的图一定要有分析,要告诉读者你画图的目的是什么。1 改变图例位置2 添加数据标签柱状(形)图点击柱形条,设置宽度(粗细)切换行和列,右击,点击“选

2021-01-26 19:02:04 107

原创 【更新2】因子分析

因子分析由斯皮尔曼在1904年首次提出,其在某种程度上可以被看成是主成分分析的推广和扩展。因子分析法通过研究变量间的相关系数矩阵,把这些变量间错综复杂的关系归结成少数几个综合因子,由于归结出的因子个数少于原始变量的个数,但是它们又包含原始变量的信息,所以,这一分析过程也称为降维。由于因子往往比主成分更易得到解释,故因子分析比主成分分析更容易成功,从而有更广泛的应用。因子分析的实例例1:在1984年洛杉矶奥运会田径统计手册中,有55个国家和地区的如下八项男子径赛运动记录:X1:

2021-01-25 22:16:10 217

原创 【更新5】灰色系统分析

美赛不建议用,国内的赛可以

2021-01-25 18:50:33 38

原创 美赛写作

这里写目录标题总体框架:Summary Sheet 摘要页标题和目录1 Introduction(引言)2 Assumptions and Justifications(模型假设,并且要论证假设的合理性)3 Notations(符号说明)4&5&6. The name of model 1,2,3Data Deascription(不常见)7. Sensitivity Analysis(灵敏度分析或敏感性分析)8. Model Evaluation and Further Discussio

2021-01-25 15:24:53 1760 1

原创 分类模型

线性概率模型数据预处理:生成虚拟变量对于因变量为分类变量的情况,我们可以使用逻辑回归进行处理。把y看成事件发生的概率,y>0.5表示发生;y<0.5表示不发生Spss求解逻辑回归预测成功率假如自变量有分类变量怎么办?直接点击分类,然后定义分类协变量,Spss会自动帮我们生成预测结果较差怎么办?加入了平方项后,可能会过拟合如何确定合适的模型?把数据分为训练组和测试组,用训练组的数据来估计出模型,再用测试组的数据来进行测试。(训练组和测试组的比例一般设置为8.

2021-01-21 21:48:12 184

原创 图论最短路径问题

画图软件:https://csacademy.com/app/graph_editor/1 迪杰斯特拉算法每部都更新一个最短的路径,更新结点的最短路径迪杰斯特拉算法的一个缺点2 Bellman‐Ford(贝尔曼‐福特)算法1是起点;2是终点刚刚改变访问状态的节点为0号节点(A)我们要更新与0号节点相邻的节点信息(B),注意,这里的B节点是未访问的哦更新的规则如下:如果(A与B的距离+ A列表中的距离)小于(B列表中的距离),那么我们就将B列表中的距离更新为较小的距离,并将B的父亲

2021-01-20 22:08:36 84 1

原创 典型相关分析

典型相关分析(Canonical Correlation analysis)研究两组变量(每组变量中都可能有多个指标)之间相关关系的一种多元统计方法。它能够揭示出两组变量之间的内在联系例子:我们要探究观众和业内人士对于一些电视节目的观点有什么样的关系呢?观众评分来自低学历(led)、高学历(hed)和网络(net)调查三种,它们形成第一组变量;而业内人士分评分来自包括演员和导演在内的艺术(arti)、发行(com)与业内各部门主管(man)三种,形成第二组变量直接对这些变量的相关进行两两分析,很难得

2021-01-17 21:53:30 299

原创 word排版

高手常用的两个功能1 显示/隐藏编辑标记打开这个开关后,可以看到一些隐藏的符号(例如:空格、换行符、分页符等)2 打印预览功能开启打印预览功能后,点击该按钮可以看到你论文导出为PDF格式之后的样子。注意:如果你发现你的word没有功能区,你可以在右上方设置出来。常见的快捷键1 讨厌的insert键要求:请在C和E直接插入一个 DABCDEFG插入键(Insert key,缩写INS)是电脑键盘的一个键,主要用于在文字处理器切换文本输入的模式。一种为覆盖模式,光标位置新输入字会替代原来

2021-01-15 22:43:08 130 5

原创 相关系数

相关系数总体 ——所要考察对象的全部个体叫做总体.我们总是希望得到总体数据的一些特征(例如均值方差等)样本 ——从总体中所抽取的一部分个体叫做总体的一个样本.计算这些抽取的样本的统计量来估计总体的统计量:例如使用样本均值、样本标准差来估计总体的均值(平均水平)和总体的标准差(偏离程度)。例子:我国10年进行一次的人口普查得到的数据就是总体数据。大家自己在QQ群发问卷叫同学帮忙填写得到的数据就是样本数据这里的相关系数只是用来衡量两个变量线性相关程度的指标;也就是说,你必须先确认这两个

2021-01-15 22:06:37 740

原创 拟合算法

与插值问题不同,在拟合问题中不需要曲线一定经过给定的点。拟合问题的目标是寻求一个函数(曲线),使得该曲线在某种准则下与所有的数据点最为接近,即曲线拟合的最好(最小化损失函数)插值算法中,得到的多项式f(x)要经过所有样本点。但是如果样本点太多,那么这个多项式次数过高,会造成龙格现象。尽管我们可以选择分段的方法避免这种现象,但是更多时候我们更倾向于得到一个确定的曲线,尽管这条曲线不能经过每一个样本点,但只要保证误差足够小即可,这就是拟合的思想。(拟合的结果是得到一个确定的曲线)这里 好像机器学习呀

2021-01-14 23:00:24 196

原创 插值算法

插值算法:数模比赛中,常常需要根据已知的函数点进行数据、模型的处理和分析,而有时候现有的数据是极少的,不足以支撑分析的进行,这时就需要使用一些数学的方法,“模拟产生”一些新的但又比较靠谱的值来满足需求,这就是插值的作用。像这样缺少数据对应的要用到插值算法:由于拉格朗日插值会出现龙格现象(Runge phenomenon) 如下:引入了牛顿插值,但牛顿插值也会出现龙格现象为了克服龙格现象,引入有导数值约束的埃尔米特插值分段三次埃尔米特插值三次样条插值三次样条生成的曲线更加光

2021-01-13 17:14:40 136

原创 TOPSIS法

引入:层次分析法的一些局限性:(1)评价的决策层不能太多,太多的话n会很大,判断矩阵和一致矩阵差异可能会很大。2)如果决策层中指标的数据是已知的,就无法使用层次分析法了步骤:一:指标个数为多个时,将所有的指标转化为极大型称为指标正向化(最常用)二:三:...

2021-01-13 09:28:57 217

原创 tf. 操作

sess.run(tf.global_variables_initializer())初始化模型的参数(必加)tf.math.reduce_meantf.reduce_mean 两种叫法都可以~ tf.math.reduce_mean( input_tensor, axis=None, keepdims=None, name=None, reduction_indices=None, keep_d

2020-09-27 16:02:00 67

原创 Anaconda环境下安装pytorch,torchvision(及出错的解决方法)

下载地址:https://download.pytorch.org/whl/torch_stable.html.我的是 cpu python 3,7 win10系统对应如下2切换目录将下载的whl文件拷贝到anaconda的lib中的site-packages目录下。目录 例如:E:\Anaconda3\Lib\site-packages。3安装之后打开anaconda prompt输入命令,切换到site-packages目录下:(base) C:\Users\Lenovo>

2020-09-22 09:55:59 1206

原创 第二章 数字图像储存与读取

多波段存储方式图像存储基本信息遥感文件储存格式多波段存储方式图像存储基本信息遥感文件储存格式

2020-09-20 16:06:01 158

原创 第三章 空间处理域方法

数值运算点运算单波段运算多波段运算集合运算逻辑运算数学形态学运算1 二值形态学2 灰度形态学数值运算点运算单波段运算卷积操作都很熟练了吧多波段运算代数运算 :剖面运算:集合运算图像裁剪,镶嵌波段提取与叠加逻辑运算与(求交),或(求并),异或(求相交子图像)数学形态学运算1 二值形态学腐蚀操作去除田埂连接膨胀操作消除耕地地块的内空洞点2 灰度形态学开闭运算与二值形态学一样;...

2020-09-20 15:36:28 52

原创 python中numpy操作

链接1(基本数据类型:元组,字符串,列表等): https://blog.csdn.net/TeFuirnever/article/details/89046460.链接2:(数组)https://blog.csdn.net/TeFuirnever/article/details/89047713.链接3:(读取matlab文件,Matplotlib绘图,输出图像)https://blog.csdn.net/TeFuirnever/article/details/89051702....

2020-09-14 22:02:41 47

原创 层次分析法

层次分析法1 建立层次结构模型2 对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,构造判断矩阵3 由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,(检验通过才能够计算权重)a 算数平均法b 几何平均法c 特征值求权重4 根据权重矩阵计算得分,并进行排序代码1 建立层次结构模型目标 方案 准则 层2 对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,构造判断矩阵两两比较:判断矩阵:在同一因素下,填写不同方案的判断矩阵。有可能出现矛盾之处这时需要一

2020-09-13 18:04:27 1190 1

原创 matlab运算符

算数运算符算数乘 *点乘 .*算数乘方 ^点乘方 .^算数左除 \ a\b=b/a算数右除 \ a/b和传统除法相同矩阵转置 ’ (当矩阵是复数时,求矩阵共轭转置)矩阵转置 .’ (当矩阵是复数时,不求矩阵共轭)关系运算符不等于 ~=其他一样逻辑运算符逻辑与 and ,&逻辑或 |,or逻辑非 ~逻辑异或 xor所有元素均非0为真 all有非0元素为真 any...

2020-09-10 22:11:48 61

原创 机器学习中偏差方差是什么,如何解决高偏差,高方差

偏差: 描述模型输出结果的期望与样本真实结果的差距。方差: 描述模型对于给定值的输出稳定性。高偏差/欠拟合高方差/过拟合获得更多的训练实例——解决高方差尝试减少特征的数量——解决高方差尝试获得更多的特征——解决高偏差尝试增加多项式特征——解决高偏差尝试减少正则化程度 λ——解决高偏差尝试增加正则化程度 λ——解决高方差...

2020-09-05 17:34:56 333

原创 机器学习常见中函数(自用)

np.Insert():np.linalg.inv():np.dot(A, B):np.multiply(), 或 * :np.Insert():数据插入np.linalg.inv():矩阵求逆np.dot(A, B):同线性代数中矩阵乘法的定义,对于二维矩阵,计算真正意义上的矩阵乘积,同线性代数中矩阵乘法的定义。对于一维矩阵,计算两者的内积,与@一样np.multiply(), 或 * :对应元素相乘...

2020-09-05 17:24:20 308

原创 Anaconda环境下安装opencv(快速方法)

1 下载opencv下载地址:国内的,巨快 https://pypi.tuna.tsinghua.edu.cn/simple/opencv-python/ 下载对应版本,win_amd64代表你电脑64位,cp37代表python是3.7我的是python3.7,如下框出来的2切换目录将下载的whl文件拷贝到anaconda的lib中的site-packages目录下。例如我的目录是:E:\Anaconda3\Lib\site-packages。3安装之后打开anaconda pro

2020-08-25 13:28:22 1989 1

原创 np.add.at()

np.add.at()是将传入的数组中制定下标位置的元素加上指定的值.将x中下标为0和为2的元素加上了3,这会改变传入的数组x,如下>>> x=np.array([1,2,3,4])>>> np.add.at(x,[0,2],3)>>> xarray([4, 2, 6, 4])...

2020-08-22 14:55:29 797

原创 cs231n笔记11—强化学习

强化学习:我们有一个代理,能够在其环境中采取行动,也可以因为其行动获得奖励,它的目标是学会如何行动以最大限度地获得奖励。在强化学习中我们有一个代理和一个环境,环境赋予代理一个状态,反过来代理将采取行动,然后环境反馈一个奖励;不断重复这个过程,直到环境给出一个终端状态结束这个环节。例如,游戏也是处理强化学习的一大类问题。 Atari游戏,目标是得到最高的分数;状态是游戏状态的原始像素,行动就是游戏的控制,例如左右上下移动,分数是每一次行动增加或减少的分数;目标就是在游戏中最大化得分。MDP(Mark

2020-08-22 13:05:02 248

原创 cs231n笔记10—生成式网络

PixelRNNPixelCNN自动编码器Autoencoder变分自动编码器VAE生成对抗网络GANs密度估计密度估计:估计数据的内在分布情况,在上方有一些一维的点,我们用一个高斯函数来拟合这一密度分布情况PixelRNNPixelRNN属于显式密度模型,它主要运用链式法则来将求出与训练数据相同的分布,如概率分布或似然建模。如下图所示,要想获得条件概率p需要比较复杂的计算,我们用神经网络来实现。从左上角一个一个生成像素,生成顺序为箭头所指顺序,每一个对之前像素的依赖关系都通过RNN来建模.

2020-08-19 21:40:07 156

原创 cs231n笔记9—分割,定位,目标检测

语义分割语义分割是指输入图像,并对图像中的每个像素做分类,为每个像素分配标签(如下图牛,树,草,天空)。语义分割并不区分同类目标。(分不出两头牛)全卷积方法是指,把很多的卷积层堆叠在一起组成一个网络,每次卷积层都保持图像大小不变, 然后对每个像素做分类,用网络层一次性完成所有运算。在多个卷积层之间先进行降采样,再进行上采样,使得输出图像的大小等同输入图像的大小降采样方法有:最大池化(pooling)或跨卷积(strided convolution)。跨卷积上采样方法有: 最近距离去池化,

2020-08-19 07:48:48 123

转载 numpy.transpose()

链接: https://blog.csdn.net/u012762410/article/details/78912667.

2020-08-18 08:10:38 40

原创 cs231n笔记8—RNN

RNN语言模型RNN使用RNN,可以实现1对1、1对多,多对一,多对多模型每个RNN网络都有一个小小的循环核心单元,它把x作为输入,将其传入RNN,RNN有一个内部隐藏态,这一隐藏态会在RNN每次读取新的输入时更新,然后当模型下一次读取输入时,这一内部隐藏态会将结果反馈至模型。这个循环过程的计算公式:在RNN模块中对某种循环关系用f函数进行了计算,这一f函数依赖权重W,它接收隐藏态ht-1和当前态Xt,然后会输出下一个隐藏态或者更新后的隐藏态,称为ht。ht还可以用tanh来变成非线性当读取下.

2020-08-17 13:50:40 246

原创 cs231n笔记7—优化/正则化/学习迁移

优化1 普通更新。最简单的更新形式是沿着负梯度方向改变参数(因为梯度指向的是上升方向,但是我们通常希望最小化损失函数)。假设有一个参数向量x及其梯度dx,那么最简单的更新的形式是:# 普通更新x += - learning_rate * dx2 动量(Momentum)更新在这里引入了一个初始化为0的变量v和一个超参数mu。说得不恰当一点,这个变量(mu)在最优化的过程中被看做动量(一般值设为0.9),但其物理意义与摩擦系数更一致。这个变量有效地抑制了速度,降低了系统的动能,不然质点在山底永远

2020-08-16 08:46:24 114

原创 激活函数

如果不用激活函数,每一层的输出都是上一层的线性组合,从而导致整个神经网络的输出为神经网络输入的线性组合,无法逼近任意函数。sigmoid数据压缩到[0,1]之间promblems:1 饱和的神经元导致梯度消失, 输入非常大(10)或非常小(-10)时,其梯度接近于02 输出不是以0为均值3 指数运算计算量大(问题不大)tanh数据压缩到[-1,1]之间与Sigmoid相比,tanh是0均值的。promblems:与Sigmoid一样, 饱和的神经元导致梯度消失...

2020-08-14 18:19:49 97

原创 cs231n作业1的不会函数,求导公式

看了下cs231n的作业,有些函数不知道,搜了博文记一下X.reshape(X.shape[0], -1)X.reshape(X.shape[0], -1)可以将一个维度为(a,b,c,d)的矩阵转换为一个维度为(a, b∗c∗d,)的矩阵X.shape(209, 64, 64, 3)#我们假设x的shape是(209, 64, 64, 3)的。X.shape[0]209X.reshape(X.shape[0], -1)(209, 64*64*3)通过reshape重新建立维度,第一个

2020-08-13 18:15:07 88

空空如也

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除