joyful pandas第3章 分组

import numpy as np
import pandas as pd
df = pd.read_csv('table.csv',index_col='ID')
df.head()

一、SAC过程

1. 内涵

SAC指的是分组操作中的split-apply-combine过程
其中split指基于某一些规则,将数据拆成若干组,apply是指对每一组独立地使用函数,combine指将每一组的结果组合成某一类数据结构

2. apply过程

在该过程中,我们实际往往会遇到四类问题:
整合(Aggregation)——即分组计算统计量(如求均值、求每组元素个数)
变换(Transformation)——即分组对每个单元的数据进行操作(如元素标准化)
过滤(Filtration)——即按照某些规则筛选出一些组(如选出组内某一指标小于50的组)
综合问题——即前面提及的三种问题的混合

二、groupby函数

1. 分组函数的基本内容:

(a)根据某一列分组

grouped_single = df.groupby('School')

经过groupby后会生成一个groupby对象,该对象本身不会返回任何东西,只有当相应的方法被调用才会起作用
例如取出某一个组:

grouped_single.get_group('S_1').head()

在这里插入图片描述

(b)根据某几列分组

grouped_mul = df.groupby(['School','Class'])
grouped_mul.get_group(('S_2','C_4'))

在这里插入图片描述

(c)组容量与组数

grouped_single.size()

在这里插入图片描述

grouped_mul.size()

在这里插入图片描述

grouped_single.ngroups

在这里插入图片描述

grouped_mul.ngroups

在这里插入图片描述

(d)组的遍历

for name,group in grouped_single:
    print(name)
    display(group.head())

在这里插入图片描述

(e)level参数(用于多级索引)和axis参数

df.set_index(['Gender','School']).groupby(level=1,axis=0).get_group('S_1').head()

在这里插入图片描述

2. groupby对象的特点

(a)查看所有可调用的方法

由此可见,groupby对象可以使用相当多的函数,灵活程度很高

print([attr for attr in dir(grouped_single) if not attr.startswith('_')])

[‘Address’, ‘Class’, ‘Gender’, ‘Height’, ‘Math’, ‘Physics’, ‘School’, ‘Weight’, ‘agg’, ‘aggregate’, ‘all’, ‘any’, ‘apply’, ‘backfill’, ‘bfill’, ‘boxplot’, ‘corr’, ‘corrwith’, ‘count’, ‘cov’, ‘cumcount’, ‘cummax’, ‘cummin’, ‘cumprod’, ‘cumsum’, ‘describe’, ‘diff’, ‘dtypes’, ‘expanding’, ‘ffill’, ‘fillna’, ‘filter’, ‘first’, ‘get_group’, ‘groups’, ‘head’, ‘hist’, ‘idxmax’, ‘idxmin’, ‘indices’, ‘last’, ‘mad’, ‘max’, ‘mean’, ‘median’, ‘min’, ‘ndim’, ‘ngroup’, ‘ngroups’, ‘nth’, ‘nunique’, ‘ohlc’, ‘pad’, ‘pct_change’, ‘pipe’, ‘plot’, ‘prod’, ‘quantile’, ‘rank’, ‘resample’, ‘rolling’, ‘sem’, ‘shift’, ‘size’, ‘skew’, ‘std’, ‘sum’, ‘tail’, ‘take’, ‘transform’, ‘tshift’, ‘var’]

(b)分组对象的head和first

对分组对象使用head函数,返回的是每个组的前几行,而不是数据集前几行

grouped_single.head()

在这里插入图片描述

grouped_single.head(2) #每一个分组的前两个

在这里插入图片描述
first显示的是以分组为索引的每组的第一个分组信息

grouped_single.first()

在这里插入图片描述

(c)分组依据

对于groupby函数而言,分组的依据是非常自由的,只要是与数据框长度相同的列表即可,同时支持函数型分组

df.groupby(np.random.choice(['a','b','c'],df.shape[0])).get_group('a').head()
#相当于将np.random.choice(['a','b','c'],df.shape[0])当做新的一列进行分组

在这里插入图片描述
从原理上说,我们可以看到利用函数时,传入的对象就是索引,因此根据这一特性可以做一些复杂的操作

df[:5].groupby(lambda x:print(x)).head(0)

在这里插入图片描述
根据奇偶行分组

df.groupby(lambda x:'奇数行' if not df.index.get_loc(x)%2==1 else '偶数行').groups

在这里插入图片描述
如果是多层索引,那么lambda表达式中的输入就是元组,下面实现的功能为查看两所学校中男女生分别均分是否及格
注意:此处只是演示groupby的用法,实际操作不会这样写

math_score = df.set_index(['Gender','School'])['Math'].sort_index()
grouped_score = df.set_index(['Gender','School']).sort_index().\
            groupby(lambda x:(x,'均分及格' if math_score[x].mean()>=60 else '均分不及格'))
for name,_ in grouped_score:print(name)

在这里插入图片描述

(d)groupby的[]操作

可以用[]选出groupby对象的某个或者某几个列,上面的均分比较可以如下简洁地写出:

df.groupby(['Gender','School'])['Math'].mean()>=60

在这里插入图片描述
用列表可选出多个属性列:

df.groupby(['Gender','School'])[['Math','Height']].mean()

在这里插入图片描述

(e)连续型变量分组

例如利用cut函数对数学成绩分组:

bins = [0,40,60,80,90,100]
cuts = pd.cut(df['Math'],bins=bins) #可选label添加自定义标签
df.groupby(cuts)['Math'].count()

在这里插入图片描述

三、聚合、过滤和变换

1. 聚合(Aggregation)

(a)常用聚合函数

所谓聚合就是把一堆数,变成一个标量,因此mean/sum/size/count/std/var/sem/describe/first/last/nth/min/max都是聚合函数
为了熟悉操作,不妨验证标准误sem函数,它的计算公式是:组内标准差/(组容量)1/2,下面进行验证:

group_m = grouped_single['Math']
group_m.std().values/np.sqrt(group_m.count().values)== group_m.sem().values

在这里插入图片描述

(b)同时使用多个聚合函数

group_m.agg(['sum','mean','std'])

在这里插入图片描述
利用元组进行重命名

group_m.agg([('rename_sum','sum'),('rename_mean','mean')])

在这里插入图片描述
指定哪些函数作用哪些列

grouped_mul.agg({'Math':['mean','max'],'Height':'var'})

在这里插入图片描述

(c)使用自定义函数

grouped_single['Math'].agg(lambda x:print(x.head(),'间隔'))
#可以发现,agg函数的传入是分组逐列进行的,有了这个特性就可以做许多事情

在这里插入图片描述
官方没有提供极差计算的函数,但通过agg可以容易地实现组内极差计算

grouped_single['Math'].agg(lambda x:x.max()-x.min())

在这里插入图片描述

(d)利用NamedAgg函数进行多个聚合

注意:不支持lambda函数,但是可以使用外置的def函数

def R1(x):
    return x.max()-x.min()
def R2(x):
    return x.max()-x.median()
grouped_single['Math'].agg(min_score1=pd.NamedAgg(column='col1', aggfunc=R1),
                           max_score1=pd.NamedAgg(column='col2', aggfunc='max'),
                           range_score2=pd.NamedAgg(column='col3', aggfunc=R2)).head()

在这里插入图片描述

(e)带参数的聚合函数

判断是否组内数学分数至少有一个值在50-52之间:

def f(s,low,high):
    return s.between(low,high).any()
grouped_single['Math'].agg(f,50,52)

在这里插入图片描述
如果需要使用多个函数,并且其中至少有一个带参数,则使用wrap技巧:

def f_test(s,low,high):
    return s.between(low,high).max()
def agg_f(f_mul,name,*args,**kwargs):
    def wrapper(x):
        return f_mul(x,*args,**kwargs)
    wrapper.__name__ = name
    return wrapper
new_f = agg_f(f_test,'at_least_one_in_50_52',50,52)
grouped_single['Math'].agg([new_f,'mean']).head()

在这里插入图片描述

2. 过滤(Filteration)

filter函数是用来筛选某些组的(务必记住结果是组的全体),因此传入的值应当是布尔标量

grouped_single[['Math','Physics']].filter(lambda x:(x['Math']>32).all()).head()

在这里插入图片描述

3. 变换(Transformation)

(a)传入对象

transform函数中传入的对象是组内的列,并且返回值需要与列长完全一致

grouped_single[['Math','Height']].transform(lambda x:x-x.min()).head()

在这里插入图片描述
如果返回了标量值,那么组内的所有元素会被广播为这个值

grouped_single[['Math','Height']].transform(lambda x:x.mean()).head()

在这里插入图片描述

(b)利用变换方法进行组内标准化

grouped_single[['Math','Height']].transform(lambda x:(x-x.mean())/x.std()).head()

在这里插入图片描述

(c)利用变换方法进行组内缺失值的均值填充

df_nan = df[['Math','School']].copy().reset_index()
df_nan.loc[np.random.randint(0,df.shape[0],25),['Math']]=np.nan
df_nan.head()

在这里插入图片描述

df_nan.groupby('School').transform(lambda x: x.fillna(x.mean())).join(df.reset_index()['School']).head()

在这里插入图片描述

四、apply函数

1. apply函数的灵活性

可能在所有的分组函数中,apply是应用最为广泛的,这得益于它的灵活性:
对于传入值而言,从下面的打印内容可以看到是以分组的表传入apply中:

df.groupby('School').apply(lambda x:print(x.head(1)))

在这里插入图片描述
apply函数的灵活性很大程度来源于其返回值的多样性:

① 标量返回值

df[['School','Math','Height']].groupby('School').apply(lambda x:x.max())

在这里插入图片描述

② 列表返回值

df[['School','Math','Height']].groupby('School').apply(lambda x:x-x.min()).head()

在这里插入图片描述

③ 数据框返回值

df[['School','Math','Height']].groupby('School')\
    .apply(lambda x:pd.DataFrame({'col1':x['Math']-x['Math'].max(),
                                  'col2':x['Math']-x['Math'].min(),
                                  'col3':x['Height']-x['Height'].max(),
                                  'col4':x['Height']-x['Height'].min()})).head()

在这里插入图片描述

2. 用apply同时统计多个指标

此处可以借助OrderedDict工具进行快捷的统计:

from collections import OrderedDict
def f(df):
    data = OrderedDict()
    data['M_sum'] = df['Math'].sum()
    data['W_var'] = df['Weight'].var()
    data['H_mean'] = df['Height'].mean()
    return pd.Series(data)
grouped_single.apply(f)

在这里插入图片描述

五、问题与练习

1. 问题

【问题一】 什么是fillna的前向/后向填充,如何实现?

# 向前和向后填充,使用 ffill和 bfill
# fillna(method='ffill')
# fillna(method='bfill')

【问题二】 下面的代码实现了什么功能?请仿照设计一个它的groupby版本。

s = pd.Series ([0, 1, 1, 0, 1, 1, 1, 0])
s1 = s.cumsum()
result = s.mul(s1).diff().where(lambda x: x < 0).ffill().add(s1,fill_value =0)

【问题三】 如何计算组内0.25分位数与0.75分位数?要求显示在同一张表上。

# 中位数 print(np.median(a))
# 25%分位数 print(np.percentile(a, 25))
# 75%分位数 print(np.percentile(a, 75))
def per_25(x):
    return np.percentile(x,25)
def per_75(x):
    return np.percentile(x,75)
print(grouped_single.agg(percentile_25=pd.NamedAgg(column='Math',aggfunc=per_25),
						percentile_75=pd.NamedAgg(column='Math', aggfunc=per_75)))

在这里插入图片描述
【问题四】 既然索引已经能够选出某些符合条件的子集,那么filter函数的设计有什么意义?

【问题五】 整合、变换、过滤三者在输入输出和功能上有何异同?
【问题六】 在带参数的多函数聚合时,有办法能够绕过wrap技巧实现同样功能吗?
2. 练习
【练习一】: 现有一份关于diamonds的数据集,列分别记录了克拉数、颜色、开采深度、价格,请解决下列问题:

diamond = pd.read_csv('Diamonds.csv')
diamond.head()

在这里插入图片描述
(a) 在所有重量超过1克拉的钻石中,价格的极差是多少?

dim = diamond.query("carat>1")["price"]
dim.max() - dim.min()

在这里插入图片描述

(b) 若以开采深度的0.2\0.4\0.6\0.8分位数为分组依据,每一组中钻石颜色最多的是哪一种?该种颜色是组内平均而言单位重量最贵的吗?

#b
bins = diamond['depth'].quantile(np.linspace(0,1,6)).tolist()
cuts = pd.cut(diamond['depth'],bins=bins) #可选label添加自定义标签
diamond['cuts'] = cuts
diamond.head()

在这里插入图片描述

#b
color_result = diamond.groupby('cuts')['color'].describe()
color_result

在这里插入图片描述

#b
diamond['均重价格']=diamond['price']/diamond['carat']
color_result['top'] == [i[1] for i in diamond.groupby(['cuts','color'])['均重价格'].mean().groupby(['cuts']).idxmax().values]

在这里插入图片描述

© 以重量分组(0-0.5,0.5-1,1-1.5,1.5-2,2+),按递增的深度为索引排序,求每组中连续的严格递增价格序列长度的最大值。
(d) 请按颜色分组,分别计算价格关于克拉数的回归系数。(单变量的简单线性回归,并只使用Pandas和Numpy完成)
【练习二】:有一份关于美国10年至17年的非法药物数据集,列分别记录了年份、州(5个)、县、药物类型、报告数量,请解决下列问题:

dg = pd.read_csv('Drugs.csv')
dg.head()

在这里插入图片描述
(a) 按照年份统计,哪个县的报告数量最多?这个县所属的州在当年也是报告数最多的吗?

idx = pd.IndexSlice
for i in range(2010,2018):
    county = (dg.groupby(['COUNTY','YYYY']).sum().loc[idx[:,i],:].idxmax()[0][0])
    state = dg.query('COUNTY == "%s"'%county)['State'].iloc[0]
    state_true = dg.groupby(['State','YYYY']).sum().loc[idx[:,i],:].idxmax()[0][0]
    if state==state_true:
        print('在%d年,%s县的报告数最多,它所属的州%s也是报告数最多的'%(i,county,state))
    else:
        print('在%d年,%s县的报告数最多,但它所属的州%s不是报告数最多的,%s州报告数最多'%(i,county,state,state_true))

在这里插入图片描述

(b) 从14年到15年,Heroin的数量增加最多的是哪一个州?它在这个州是所有药物中增幅最大的吗?若不是,请找出符合该条件的药物。

dg_b = dg[(dg['YYYY'].isin([2014,2015]))&(dg['SubstanceName']=='Heroin')]
dg_add = dg_b.groupby(['YYYY','State']).sum()
(dg_add.loc[2015]-dg_add.loc[2014]).idxmax()

在这里插入图片描述

dg_b = dg[(dg['YYYY'].isin([2014,2015]))&(dg['State']=='OH')]
dg_add = dg_b.groupby(['YYYY','SubstanceName']).sum()
#这里利用了索引对齐的特点
display((dg_add.loc[2015]-dg_add.loc[2014]).idxmax()) 
display((dg_add.loc[2015]/dg_add.loc[2014]).idxmax())

在这里插入图片描述

Reference

https://github.com/datawhalechina/joyful-pandas

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值