jieba
1、简介
1、文本分析中,分词是必不可少的一个环节。而jieba可以说是分词领域的佼佼者,是我们经常用到的一个python分词库。
2、模式
(1)支持三种分词模式:
- 精确模式:试图将句子最精确的切开,适合文本分析。
- 全模式:把句子中所有可以成词的词语都扫描出来,速度非常快,但是不能解决歧义。
- 搜索引擎模式:在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
(2)支持繁体分词
(3)支持自定义词典
2、安装
pip install jieba
3、涉及到的算法
- 基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图 (DAG)
- 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合
- 对于未登录词,采用了基于汉字成词能力的 HMM (隐马尔科夫)模型,使用了 Viterbi 算法
4、功能
4.1 分词
4.1.1 直接分词
- jieba.cut 方法接受三个输入参数: 需要分词的字符串;cut_all 参数用来控制是否采用全模式;HMM 参数用来控制是否使用 HMM 模型
- jieba.cut_for_search 方法接受两个参数:需要分词的字符串;是否使用 HMM 模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细
- 待分词的字符串可以是 unicode 或 UTF-8 字符串、GBK 字符串。注意:不建议直接输入 GBK 字符串,可能无法预料地错误解码成 UTF-8
- jieba.cut 以及 jieba.cut_for_search 返回的结构都是一个可迭代的 generator,可以使用 for 循环来获得分词后得到的每一个词语(unicode),或者用
- jieba.lcut 以及 jieba.lcut_for_search 直接返回 list
- jieba.Tokenizer(dictionary=DEFAULT_DICT) 新建自定义分词器,可用于同时使用不同词典。jieba.dt 为默认分词器,所有全局分词相关函数都是该分词器的映射。
代码示例:
import jieba
seg_list = jieba.cut("今年五一,我来到北京清华大学", cut_all=True)
print("全模式: " + "/ ".join(seg_list)) # 全模式
seg_list = jieba.cut("今年五一,我来到北京清华大学", cut_all=False)
print("精确模式: " + "/ ".join(seg_list)) # 精确模式
seg_list = jieba.cut("今年五一,我来到北京清华大学") # 默认是精确模式
print(", ".join(seg_list))
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式
print('搜索引擎模式'+", ".join(seg_list))
输出:
全模式: 今年/ 五一/ ,/ 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
精确模式: 今年/ 五一/ ,/ 我/ 来到/ 北京/ 清华大学
今年, 五一, ,, 我, 来到, 北京, 清华大学
搜索引擎模式小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, ,, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造
4.1.2 添加自定义词典 +分词
-
开发者可以指定自己自定义的词典,以便包含 jieba 词库里没有的词。虽然 jieba 有新词识别能力,但是自行添加新词可以保证更高的正确率
-
用法: jieba.load_userdict(file_name) # file_name 为文件类对象或自定义词典的路径
-
词典格式和 dict.txt 一样,一个词占一行;每一行分三部分:词语、词频(可省略)、词性(可省略),用空格隔开,顺序不可颠倒。file_name 若为路径或二进制方式打开的文件,则文件必须为 UTF-8 编码。
-
词频省略时使用自动计算的能保证分出该词的词频。
例如: -
userdict.txt
云计算 5
李小福 2 nr
创新办 3 i
easy_install 3 eng
好用 300
韩玉赏鉴 3 nz
八一双鹿 3 nz
台中
凱特琳 nz
Edu Trust认证 2000
- 更改分词器(默认为 jieba.dt)的 tmp_dir 和 cache_file 属性,可分别指定缓存文件所在的文件夹及其文件名,用于受限的文件系统。
案例:
- 之前即没有添加自定义字典
import jieba
seg_list = jieba.cut("李小福是创新办主任也是云计算方面的专家") # 默认是精确模式
print(", ".join(seg_list))
输出:
李小福/ 是/ 创新/ 办/ 主任/ 也/ 是/ 云/ 计算/ 方面/ 的/ 专家
- 加载自定义词库后:
#导入jieba包
import jieba
#管理系统路径
import sys
sys.path.append("../")
#获取自定义词典
jieba.load_userdict("userdict.txt")
test_sent = (
"李小福是创新办主任也是云计算方面的专家"
)
#默认分词
words = jieba.cut(test_sent)
print('/'.join(words))#使用/把分词的结果分开
输出:
李小福/是/创新办/主任/也/是/云计算/方面/的/专家
是不是,就很准确了呢!
调整字典
- 使用 add_word(word, freq=None, tag=None) 和 del_word(word) 可在程序中动态修改词典。
- 使用 suggest_freq(segment, tune=True) 可调节单个词语的词频,使其能(或不能)被分出来。
- 注意:自动计算的词频在使用 HMM 新词发现功能时可能无效。
示例:
#添加词
jieba.add_word('石墨烯')</