Ascend训练,如何将算子强制转换为float32

在Ascend上训练时精度和在GPU上训练时差距较大,怀疑是算子溢出问题。

请问如何将Ascend算子强制设置为float32运行?是只需要在传入相应算子前进行Ops.cast就行了吗?

还有一个问题是,算子溢出一般是只会发生在前向网络里吗,我看有一些文档提到loss里的算子是按float32处理的?

****************************************************解答*****************************************************

也可以把对应算子的输入Tensor传给Tensor(...,dtype=ms.float32),反向算子也有肯能溢出吧,不过反向一般都是跑的Fp32.

init里

self.linear = nn.Dense(in_channels, out_channels).to_float(mstype.float32)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值