数学基础第三天

行列式
1.行列式按行(列)展开定理

(1) 设 [公式] ,则: [公式]

或 [公式] ,即 [公式] ,

其中: [公式]

[公式]

(2) 设 [公式] 为 [公式] 阶方阵,则 [公式] ,但 [公式] 不一定成立。

(3) [公式] , [公式] 为 [公式] 阶方阵。

(4) 设 [公式] 为 [公式] 阶方阵, [公式] (若 [公式] 可逆), [公式]

[公式]

(5) [公式]
, [公式] 为方阵,但 [公式] 。

(6) 范德蒙行列式 [公式]

设 [公式] 是 [公式] 阶方阵, [公式] 是 [公式] 的 [公式] 个特征值,则
[公式]

矩阵
矩阵: [公式] 个数 [公式] 排成 [公式] 行 [公式] 列的表格 [公式] 称为矩阵,简记为 [公式] ,或者 [公式] 。若 [公式] ,则称 [公式] 是 [公式] 阶矩阵或 [公式] 阶方阵。

矩阵的线性运算

1.矩阵的加法

设 [公式] , [公式] 是两个 [公式] 矩阵,则 [公式] 矩阵 [公式] 称为矩阵 [公式] 与 [公式] 的和,记为 [公式] 。

2.矩阵的数乘

设 [公式] 是 [公式] 矩阵, [公式] 是一个常数,则 [公式] 矩阵 [公式] 称为数 [公式] 与矩阵 [公式] 的数乘,记为 [公式] 。

3.矩阵的乘法

设 [公式] 是 [公式] 矩阵, [公式] 是 [公式] 矩阵,那么 [公式] 矩阵 [公式] ,其中 [公式] 称为 [公式] 的乘积,记为 [公式] 。

  1. [公式] 、 [公式] 、 [公式] 三者之间的关系

(1) [公式]

(2) [公式]
但 [公式] 不一定成立。

(3) [公式] , [公式]

但 [公式] 不一定成立。

(4) [公式]

5.有关 [公式] 的结论

(1) [公式]

(2) [公式]

(3) 若 [公式] 可逆,则 [公式]

(4) 若 [公式] 为 [公式] 阶方阵,则:

[公式]

6.有关 [公式] 的结论

[公式] 可逆 [公式]

[公式] 可以表示为初等矩阵的乘积; [公式] 。

7.有关矩阵秩的结论

(1) 秩 [公式] =行秩=列秩;

(2) [公式]

(3) [公式]

(4) [公式]

(5) 初等变换不改变矩阵的秩

(6) [公式] ,特别若 [公式]
则: [公式]

(7) 若 [公式] 存在 [公式] 若 [公式] 存在, [公式] 。

(8) [公式] 只有零解

8.分块求逆公式

[公式] ; [公式] ;

[公式] ; [公式]

这里 [公式] , [公式] 均为可逆方阵。

向量
1.有关向量组的线性表示

(1) [公式] 线性相关 [公式] 至少有一个向量可以用其余向量线性表示。

(2) [公式] 线性无关, [公式] , [公式] 线性相关 [公式] 可以由 [公式] 唯一线性表示。

(3) [公式] 可以由 [公式] 线性表示
[公式] 。

2.有关向量组的线性相关性

(1)部分相关,整体相关;整体无关,部分无关.

(2) ① [公式] 个 [公式] 维向量 [公式] 线性无关 [公式] ,

[公式] 个 [公式]维向量 [公式] 线性相关
[公式] 。

② [公式] 个 [公式] 维向量线性相关。

③ 若[公式]线性无关,则添加分量后仍线性无关;或一组向量线性相关,去掉某些分量后仍线性相关。

3.有关向量组的线性表示

(1) [公式]线性相关 [公式] 至少有一个向量可以用其余向量线性表示。

(2) [公式]线性无关, [公式] , [公式] 线性相关 [公式] 可以由 [公式] 唯一线性表示。

(3) [公式]可以由[公式]线性表示 [公式]

4.向量组的秩与矩阵的秩之间的关系

设 [公式] ,则 [公式] 的秩 [公式] 与 [公式] 的行列向量组的线性相关性关系为:

(1) 若 [公式] ,则 [公式] 的行向量组线性无关。

(2) 若 [公式] ,则 [公式] 的行向量组线性相关。

(3) 若 [公式] ,则 [公式] 的列向量组线性无关。

(4) 若 [公式] ,则 [公式] 的列向量组线性相关。

  1. [公式] 维向量空间的基变换公式及过渡矩阵

若 [公式] 与 [公式] 是向量空间 [公式] 的两组基,则基变换公式为:

[公式]

其中 [公式] 是可逆矩阵,称为由基 [公式] 到基 [公式] 的过渡矩阵。

6.坐标变换公式

若向量 [公式] 在基 [公式] 与基 [公式] 的坐标分别是
[公式] , [公式] 即:[公式] ,则向量坐标变换公式为 [公式] 或 [公式] ,其中 [公式] 是从基 [公式] 到基 [公式] 的过渡矩阵。

7.向量的内积

[公式]

8.Schmidt正交化

若 [公式] 线性无关,则可构造 [公式] 使其两两正交,且 [公式] 仅是 [公式] 的线性组合 [公式] ,再把 [公式] 单位化,记 [公式] ,则 [公式] 是规范正交向量组。

其中 [公式] , [公式] , [公式] ,

[公式]

9.正交基及规范正交基

向量空间一组基中的向量如果两两正交,就称为正交基;若正交基中每个向量都是单位向量,就称其为规范正交基。

线性方程组
1.克莱姆法则

线性方程组 [公式] ,如果系数行列式 [公式] ,

则方程组有唯一解, [公式] ,其中 [公式] 是把 [公式] 中第 [公式] 列元素换成方程组右端的常数列所得的行列式。

  1. [公式] 阶矩阵 [公式] 可逆 [公式] 只有零解。 [公式] 总有唯一解,一般地, [公式] 只有零解。

3.非奇次线性方程组有解的充分必要条件,线性方程组解的性质和解的结构

(1) 设 [公式] 为 [公式] 矩阵,若 [公式] ,则对 [公式] 而言必有 [公式] ,从而 [公式] 有解。

(2) 设 [公式] 为 [公式] 的解,则 [公式] 当 [公式] 时仍为 [公式] 的解;但当 [公式] 时,则为 [公式] 的解。特别 [公式] 为 [公式] 的解; [公式] 为 [公式] 的解。

(3) 非齐次线性方程组 [公式] 无解 [公式] 不能由 [公式] 的列向量 [公式] 线性表示。

4.奇次线性方程组的基础解系和通解,解空间,非奇次线性方程组的通解

(1) 齐次方程组 [公式] 恒有解(必有零解)。当有非零解时,由于解向量的任意线性组合仍是该齐次方程组的解向量,因此 [公式] 的全体解向量构成一个向量空间,称为该方程组的解空间,解空间的维数是 [公式] ,解空间的一组基称为齐次方程组的基础解系。

(2) [公式] 是 [公式] 的基础解系,即:

  1. [公式] 是 [公式] 的解;

  2. [公式] 线性无关;

  3. [公式] 的任一解都可以由 [公式] 线性表出。
    [公式] 是 [公式] 的通解,其中 [公式] 是任意常数。

矩阵的特征值和特征向量
1.矩阵的特征值和特征向量的概念及性质

(1) 设 [公式] 是 [公式] 的一个特征值,则 [公式] 有一个特征值分别为 [公式] 且对应特征向量相同( [公式] 例外)。

(2)若 [公式] 为 [公式] 的 [公式] 个特征值,则 [公式] ,从而 [公式] 没有特征值。

(3)设 [公式] 为 [公式] 的 [公式] 个特征值,对应特征向量为 [公式] ,

若: [公式] ,

则: [公式] 。

2.相似变换、相似矩阵的概念及性质

(1) 若 [公式] ,则

  1. [公式]

  2. [公式]

  3. [公式] ,对 [公式] 成立

3.矩阵可相似对角化的充分必要条件

(1)设 [公式] 为 [公式] 阶方阵,则 [公式] 可对角化 [公式] 对每个 [公式] 重根特征值 [公式] ,有 [公式]

(2) 设 [公式] 可对角化,则由 [公式] 有 [公式] ,从而 [公式]

(3) 重要结论

  1. 若 [公式] ,则 [公式] 。

  2. 若 [公式] ,则 [公式] ,其中 [公式] 为关于 [公式] 阶方阵 [公式] 的多项式。

  3. 若 [公式] 为可对角化矩阵,则其非零特征值的个数(重根重复计算)=秩( [公式] )

4.实对称矩阵的特征值、特征向量及相似对角阵

(1)相似矩阵:设 [公式] 为两个 [公式] 阶方阵,如果存在一个可逆矩阵 [公式] ,使得 [公式] 成立,则称矩阵 [公式] 与 [公式] 相似,记为 [公式] 。

(2)相似矩阵的性质:如果 [公式] 则有:

  1. [公式]

  2. [公式] (若 [公式] , [公式] 均可逆)

  3. [公式] ( [公式] 为正整数)

  4. [公式] ,从而 [公式] 有相同的特征值

  5. [公式] ,从而 [公式] 同时可逆或者不可逆

  6. 秩 [公式] 秩 [公式] , [公式] 不一定相似

二次型

  1. [公式] 个变量 [公式] 的二次齐次函数

[公式] ,其中 [公式] ,称为 [公式] 元二次型,简称二次型. 若令 [公式] ,这二次型 [公式] 可改写成矩阵向量形式 [公式] 。其中 [公式] 称为二次型矩阵,因为 [公式] ,所以二次型矩阵均为对称矩阵,且二次型与对称矩阵一一对应,并把矩阵 [公式] 的秩称为二次型的秩。

2.惯性定理,二次型的标准形和规范形

(1) 惯性定理

对于任一二次型,不论选取怎样的合同变换使它化为仅含平方项的标准型,其正负惯性指数与所选变换无关,这就是所谓的惯性定理。

(2) 标准形

二次型 [公式] 经过合同变换 [公式] 化为 [公式] [公式] 称为 [公式] 的标准形。在一般的数域内,二次型的标准形不是唯一的,与所作的合同变换有关,但系数不为零的平方项的个数由 [公式] 唯一确定。

(3) 规范形

任一实二次型 [公式] 都可经过合同变换化为规范形 [公式] ,其中 [公式] 为 [公式] 的秩, [公式] 为正惯性指数, [公式] 为负惯性指数,且规范型唯一。

3.用正交变换和配方法化二次型为标准形,二次型及其矩阵的正定性

设 [公式] 正定 [公式] 正定; [公式] , [公式] 可逆; [公式] ,且 [公式]

[公式] , [公式] 正定 [公式] 正定,但 [公式] , [公式] 不一定正定。

[公式] 正定 [公式]

[公式] 的各阶顺序主子式全大于零

[公式] 的所有特征值大于零

[公式] 的正惯性指数为 [公式]

[公式] 存在可逆阵 [公式] 使 [公式]

[公式] 存在正交矩阵 [公式] ,使 [公式]

其中 [公式] 。正定 [公式] 正定;[公式] 可逆; [公式] ,且 [公式] 。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值