AcWing 200 Hankson的趣味题

题目描述:
已知正整数a0,a1,b0,b1,设某未知正整数x满足:

1、 x和a0的最大公约数是a1;
2、 x和b0的最小公倍数是b1。

Hankson的“逆问题”就是求出满足条件的正整数x的个数。
题解:
首先这里感谢xyw师哥的现场指导!(没有师哥csdn就不@了)
关于这个题目其实就是一个推导转换的过程:
gcd(x,a0) = a1 ---> gcd(x/a1,a0/a1) = 1
lcm(x,b0) = b1 ---> gcd(b1/x,b0/b1) = 1
我们同时发现x/a1b1/a1的约数,同时我们知道约数总是成对出现的,所以另一个约数就是b1/x
那么这个题目就转换成了求解同时满足gcd(x/a1,a0/a1) = 1gcd(b1/x,b0/b1) = 1的关于b1/a1的约数。
那么就可以做了
AC代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int gcd(int a,int b)
{
    return b ? gcd(b,a % b) : a;
}
int pd(int x,int y)
{
    if(gcd(x,y) == 1) return 1;
    else return 0;
}
int main()
{
    int t;
    cin >> t;
    while(t--){
        int a0,a1,b0,b1;
        cin >> a0 >> a1 >> b0 >> b1;
        if(b1 % a1 != 0) {
            cout << '0' << endl;
            continue;
        }
        int k = b1/a1,ans = 0;
        for(int i = 1;i * i <= k;i++){
            if(k % i == 0){
                if(pd(i,a0/a1) && pd(k/i,b1/b0)) ans++;
                if(i * i != k && pd(k/i,a0/a1) && pd(i,b1/b0)) ans++; //注意这里要判断一下sqrt(k) = i * i的情况因为这个时候的约数其实就只有一个                
            }
        }
        cout << ans << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CUCKyrie

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值