AcWing 164可达性统计

拓扑排序+ S T L ( b i t s e t ) STL(bitset) STL(bitset)
题解:
我们假设从节点 i i i出发,可以达到的点集为 S = s 1 , . . . . . . s n S = {s_1,......s_n} S=s1,......sn,那么我们要求节点 i i i可达的点数,其实就是 S S S中所有点可达的点数之和,表示为: f ( i ) = ∑ i = 1 n f ( s i ) f(i) = \sum_{i = 1} ^ nf(s_i) f(i)=i=1nf(si)其中 f ( i ) f(i) f(i)为从 i i i出发可以到达的总点数。
既然设计到到达顺序的问题,我们就自然想到了拓扑排序,对于某一条边 ( x , y ) (x, y) (x,y),在序列中肯定是 x x x出现在 y y y之前,所以我们可以从后往前遍历一遍拓扑序列, 统计答案即可。
统计的方法我们考虑:利用位运算的知识,把 f ( x ) f(x) f(x)压缩成一个二进制数,那么对于二进制的第 i i i位,他的含义就是:若 p o s i = 1 pos_i = 1 posi=1,存在一条边从 x x x i i i,反之不存在这样的边。这样我们可以把 n n n个数的求和运算转化成 n n n个数的或运算,最后的答案就是这个二进制结果中1的个数。
AC代码:

#include <bits/stdc++.h>

#define ill __int128
#define ll long long
#define PII pair <ll,ll>
#define ull unsigned long long
#define me(a,b) memset (a,b,sizeof(a))
#define rep(i,a,b) for (int i = a;i <= b;i ++)
#define req(i,a,b) for (int i = a;i >= b;i --)
#define ios std :: ios :: sync_with_stdio(false)

const double Exp = 1e-9;
const int INF = 0x3f3f3f3f;
const int inf = -0x3f3f3f3f;
const ll mode = 1000000007;
const double pi = 3.141592653589793;

using namespace std;

const int maxn = 3e4 + 5;

int n, m, head[maxn], deg[maxn], cnt, num, A[maxn];
bool flag[maxn];
queue<int > q;
bitset<maxn> bit[maxn];

struct Edge   //前向星存边
{
    int to, next;
}edge[maxn];

void add(int u, int v)
{
    edge[++ cnt].to = v;
    edge[cnt].next = head[u];
    head[u] = cnt;
    deg[v] ++;
    return ;
}

void topsort()
{
    for (int i = 1;i <= n;i ++) {
        if (deg[i] == 0) q.push(i);
    }
    while (!q.empty()) {
        int x = q.front();
        flag[x] = 1;
        q.pop();
        A[++ num] = x;
        for (int i = head[x];~i;i = edge[i].next) {
            int y = edge[i].to;
            if (flag[y]) continue;
            if (-- deg[y] == 0) q.push(y);
        }
    }
}

void solve()
{
    topsort();
    for(int i = num;i >= 1;i --) {
        int x = A[i];
        bit[x].reset();
        bit[x][x] = 1;
        for (int j = head[x];~j;j = edge[j].next) {
            int y = edge[j].to;
            bit[x] |= bit[y];
        }
    }
    for (int i = 1;i <= n;i ++) printf ("%d\n",bit[i].count());
    return ;
}

int main()
{
    me (head, -1);
    scanf ("%d%d", &n, &m);
    for (int i = 1;i <= m;i ++) {
        int u, v;
        scanf ("%d%d",&u, &v);
        add (u, v);
    }
    solve();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CUCKyrie

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值