第20届上海大学程序设计联赛春季赛 F - 到底是多少分啊

链接:https://ac.nowcoder.com/acm/contest/33785/F
来源:牛客网
在旅途的终点,你终于看到了大魔王小 X。
小 X 准备玩一个游戏,这个游戏规则如下:
对于一个含有 n 个数的数组 a。小 X 必须执行如下操作 t 次:
选择数组中的某一个数,给它加上 1。
经过这样 t 次操作后得到的数组 b。小 X 的得分是数组 b 中所有数的乘积。
显然,在不同的操作过程后,最终可能获得不同的数组 b。我们称两个数组是不同的,当且仅当这两个数组中至少有一个数不同,即两个数组 p, q 不同当且仅当存在 i 使得 pi≠qi 。
如果小 X 在所有不同的数组 b 中随机取一个作为最终结果,那么他的期望得分是多少?

  • 题目要求的是期望得分,等于对 n n n个数进行 t t t次操作,能带来的得分总和除以操作的种类数。操作的种类我们可以看做球盒模型( t t t相同的球放进 n n n个不同的盒子,可空)答案为 C n + t − 1 n − 1 C_{n + t - 1}^{n - 1} Cn+t1n1,于是只需要求得得分总和即可。
  • 考虑令 f i , j f_{i,j} fi,j表示对前 i i i个数进行 j j j次操作能获得的不同的得分之和,状态转移的时候我们枚举在第 i i i个数进行次 k k k次操作,即
    f i , j = ∑ k = 0 j − 1 ( f i − 1 , j − k × ( a i + k ) ) f_{i,j} = \sum_{k = 0}^{j - 1}(f_{i-1,j - k}\times (a_i + k)) fi,j=k=0j1(fi1,jk×(ai+k))
    很明显这个转移时朴素的 n 3 n^3 n3,对于这个枚举当前操作几次的 d p dp dp,我们考虑把它的形式拆开并且这样写观察一下
    f i , j = f i − 1 , j × a i + f i − 1 , j − 1 × ( a i + 1 ) + f i − 1 , j − 2 × ( a i + 2 ) + ⋯ + f i − 1 , 0 × ( a i + j ) f i , j − 1 = f i − 1 , j − 1 × a i + f i − 1 , j − 2 × ( a i + 1 ) ⋯ + f i − 1 , 0 × ( a i + j − 1 ) f_{i,j} = f_{i-1,j}\times a_i +f_{i-1,j - 1}\times (a_i + 1) + f_{i-1,j - 2}\times (a_i + 2) + \cdots +f_{i-1,0}\times (a_i + j) \\ f_{i,j - 1} = f_{i-1,j - 1}\times a_i + f_{i-1,j-2}\times (a_i + 1)\cdots +f_{i-1,0}\times (a_i + j - 1) fi,j=fi1,j×ai+fi1,j1×(ai+1)+fi1,j2×(ai+2)++fi1,0×(ai+j)fi,j1=fi1,j1×ai+fi1,j2×(ai+1)+fi1,0×(ai+j1)
    可得
    f i , j = f i − 1 , j × a i + f i , j − 1 + ∑ k = 0 j − 1 f i − 1 , k f_{i,j} = f_{i-1,j}\times a_i + f_{i,j - 1} + \sum_{k = 0}^{j - 1}f_{i-1,k} fi,j=fi1,j×ai+fi,j1+k=0j1fi1,k
    这样维护一个前缀和就可以 O ( n 2 ) O(n^2) O(n2)转移了。
    注意一下初始化的问题,仅让 f 0 , 0 = 1 f_{0,0} = 1 f0,0=1即可,他来更新最开始的答案,其它的直接转移即可。
#include <bits/stdc++.h>

using namespace std;

const long long mod = 998244353;

long long f[3010][3010],a[3010],s[3010][3010],fac[10010];
long long fiv[10010],inv[10010];

void init() {
	fac[0] = fac[1] = fiv[0] = fiv[1] = inv[1] = 1;
	for(int i = 2;i <= 10000;i ++) {
		fac[i] = fac[i - 1] * i % mod;
		inv[i] = (mod - mod / i) * inv[mod % i] % mod;
		fiv[i] = inv[i] * fiv[i - 1] % mod;
	}
}

long long ksm(long long a,long long b) {
	long long res = 1;
	while(b) {
		if(b & 1) res = res * a % mod;
		a = a * a % mod;
		b >>= 1;
	}
	return res;
}

long long invv(int x) {
	return ksm(1ll * x,mod - 2);
}

long long C(int n,int m) {
	return fac[n] * fiv[m] % mod * fiv[n - m] % mod;
}

int main() {
	init();
	// fac[0] = 1;
	// for(int i = 1;i <= 10000;i ++) fac[i] = fac[i - 1] * i % mod;
	int n,t; cin >> n >> t;
	for(int i = 1;i <= n;i ++) {
		cin >> a[i];
	}
	s[0][0] = f[0][0] = 1;
	for(int i = 1;i <= n;i ++) {
		f[i][0] = f[i - 1][0] * a[i] % mod;  
		s[i][0] = f[i][0];
	}
	for(int i = 1;i <= t;i ++) {
		s[0][i] = (s[0][i - 1] + f[0][i]) % mod;
	}
	for(int i = 1;i <= n;i ++) {
		for(int j = 1;j <= t;j ++) {
			f[i][j] = f[i - 1][j] * a[i] % mod;
			f[i][j] = (f[i][j] + f[i][j - 1]) % mod;
			f[i][j] = (f[i][j] + s[i - 1][j - 1]) % mod;
		}
		for(int j = 1;j <= t;j ++) {
			s[i][j] = (s[i][j - 1] + f[i][j]) % mod;
		}
	}
	long long ans = f[n][t] * invv(C(n + t - 1,n - 1)) % mod;
	cout << ans << '\n';
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值