数学一本通——Two Circles and a Rectangle(临界条件)

E. Two Circles and a Rectangle

Description
Give you two circles and a rectangle, your task is to judge whether the two circles can be put into the rectangle with no part of circles outside the retangle.

Input
There are multiple test cases. In every test cast, there are four float-point numbers:
a,b,r1,r2
where, a and b are two sides of the rectangle, r1 and r2 are radii of the two circles.

Output
Print a “Yes”, if the circles can be put into the rectangle. Otherwise, print a “No”.

You can safely assume x<y, where x and y are float-point numbers, if x<y+0.01.

Samples
Input Copy

5 4 1 1
5 4 1.5 2
Output
Yes
No

题意:
给一个矩形和两个圆,问矩形是否能够放开两个圆。
思路:
假设矩形的长为a,宽为b,大圆半径为r1,小圆半径为r2。
首先要满足的条件为b>2*r1。
再来考虑边界情况:
在这里插入图片描述
图片来源
可以看出直角三角形是满足条件的边界条件。
最后,其实不判0.01的精度的能过,就是直接cin没识别多组输入.
代码:

#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ll,ll>PLL;
typedef pair<int,int>PII;
typedef pair<double,double>PDD;
#define I_int ll
inline ll read()
{
    ll x=0,f=1;
    char ch=getchar();
    while(ch<'0'||ch>'9')
    {
        if(ch=='-')f=-1;
        ch=getchar();
    }
    while(ch>='0'&&ch<='9')
    {
        x=x*10+ch-'0';
        ch=getchar();
    }
    return x*f;
}
#define read read()
#define closeSync ios::sync_with_stdio(0);cin.tie(0);cout.tie(0)
#define multiCase int T;cin>>T;for(int t=1;t<=T;t++)
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i<(b);i++)
#define per(i,a,b) for(int i=(a);i>=(b);i--)
#define perr(i,a,b) for(int i=(a);i>(b);i--)
ll ksm(ll a,ll b,ll p)
{
    ll res=1;
    while(b)
    {
        if(b&1)res=res*a%p;
        a=a*a%p;
        b>>=1;
    }
    return res;
}
#define PI acos(-1)
#define x first
#define y second

int main(){
    double a,b,r1,r2;
    while(scanf("%lf%lf%lf%lf",&a,&b,&r1,&r2)!=EOF){
        if(a<b) swap(a,b);///a为长边
        if(r1<r2) swap(r1,r2);///r1为大圆半径
        if(b<2*r1) puts("No");
        else{
            if((r1+r2)*(r1+r2)<=(a-r1-r2)*(a-r1-r2)+(b-r1-r2)*(b-r1-r2)) puts("Yes");
            else puts("No");
        }
    }

    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

豆沙睡不醒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值