atcoder AtCoder Beginner Contest 210 D - National Railway(dp)

传送门

思路:

首先考虑暴力的做法,枚举两个点计算距离后取最小值,复杂度 O ( n 4 ) O(n^{4}) O(n4)
考虑怎么优化。
首先可以确定的是,一定要枚举一个点,那么可以通过控制坐标的大小关系将绝对值去掉。
假设对于点 ( i , j ) (i,j) (i,j),只考虑点 ( x , y ) (x,y) (x,y)满足 i < = x < = n , j < = y < = m i<=x<=n,j<=y<=m i<=x<=n,j<=y<=m
那么代价就变成了 a [ i ] [ j ] + a [ x ] [ y ] + c ∗ ( x − i ) + c ∗ ( y − j ) a[i][j]+a[x][y]+c*(x-i)+c*(y-j) a[i][j]+a[x][y]+c(xi)+c(yj)
拆开得到 a [ i ] [ j ] − c ∗ i − c ∗ j + a [ x ] [ y ] + c ∗ x + c ∗ y a[i][j]-c*i-c*j+a[x][y]+c*x+c*y a[i][j]cicj+a[x][y]+cx+cy
对于点 ( i , j ) (i,j) (i,j)的贡献 a [ i ] [ j ] − c ∗ i − c ∗ j a[i][j]-c*i-c*j a[i][j]cicj,可以通过枚举计算;
对于点 ( x , y ) (x,y) (x,y)的贡献 a [ x ] [ y ] + c ∗ x + c ∗ y a[x][y]+c*x+c*y a[x][y]+cx+cy,由于题目要求代价最小,所以应当维护最小值。
也就是说 d p [ i ] [ j ] dp[i][j] dp[i][j]表示的是对于满足 i < = x < = n , j < = y < = m i<=x<=n,j<=y<=m i<=x<=n,j<=y<=m的所有的点 ( x , y ) (x,y) (x,y)的贡献 a [ x ] [ y ] + c ∗ x + c ∗ y a[x][y]+c*x+c*y a[x][y]+cx+cy的最小值。
所以每次枚举到 ( i , j ) (i,j) (i,j)时,只需要假定这个点必选,再加上 d p [ i ] [ j ] dp[i][j] dp[i][j]表示上一个点的贡献,所有的答案取最小值即可,注意更新完答案后应当更新 d p dp dp数组。
这样会产生的一个问题就是,只是考虑了两个点的位置大致是呈左上-右下的趋势的情况,如果一个点在右上,另一个点在左下,这种情况没有被枚举到。
所以还应该再跑一遍,基本流程同上文类似。

代码:

又臭又长的垃圾代码:(下一个是比较简洁的代码!)


ll n,m,c,a[1100][1100],dp[1100][1100],dp1[1100][1100];

int main(){
	n=read,m=read,c=read;
	rep(i,1,n) rep(j,1,m) a[i][j]=read;
	rep(i,0,n+1) rep(j,0,m+1) dp[i][j]=1e18,dp1[i][j]=1e18;
	ll res=1e18;
	for(int i=n;i;i--)
		for(int j=m;j;j--){
			ll now=a[i][j]-c*i-c*j;
			ll las=1e18;
			if(i+1<=n&&j+1<=m) las=min(las,dp[i+1][j+1]);
			if(i+1<=n) las=min(las,dp[i+1][j]);
			if(j+1<=m) las=min(las,dp[i][j+1]);
			res=min(res,now+las);
			dp[i][j]=min(dp[i][j],a[i][j]+c*i+c*j);
			if(i+1<=n&&j+1<=m) dp[i][j]=min(dp[i][j],dp[i+1][j+1]);
			if(i+1<=n) dp[i][j]=min(dp[i][j],dp[i+1][j]);
			if(j+1<=m) dp[i][j]=min(dp[i][j],dp[i][j+1]);
		}
	for(int i=1;i<=n;i++){
		for(int j=m;j;j--){
			ll now=a[i][j]+c*i-c*j;
			ll las=1e18;
			if(i-1>=1&&j+1<=m) las=min(las,dp1[i-1][j+1]);
			if(i-1>=1) las=min(las,dp1[i-1][j]);
			if(j+1<=m) las=min(las,dp1[i][j+1]);
			res=min(res,now+las);
			dp1[i][j]=min(dp1[i][j],a[i][j]-c*i+c*j);
			if(i-1>=1&&j+1<=m) dp1[i][j]=min(dp1[i][j],dp1[i-1][j+1]);
			if(i-1>=1) dp1[i][j]=min(dp1[i][j],dp1[i-1][j]);
			if(j+1<=m) dp1[i][j]=min(dp1[i][j],dp1[i][j+1]);
		}
	}
	printf("%lld\n",res);
	
	return 0;
}

跟我的思路类似但是代码超级简洁的巨巨代码:

#include <iostream>
#include <algorithm>
#include <vector>
#include <cstring>
#include <cstdio>
#define endl '\n'
#define int long long
#define pb push_back
#define mp make_pair
#define INF 0x3f3f3f3f
#define Inf 1000000000000000000LL
#define F first
#define S second
using namespace std;
typedef pair<int,int>pii;
int n,m,C;
int a[1010][1010];
int dp[1010][1010];
int ans=0x3f3f3f3f3f3f3f3f;
void DP(){
	memset(dp,0x3f,sizeof dp);
	for(int i=1;i<=n;i++){
		for(int j=1;j<=m;j++){
			dp[i][j]=min(dp[i][j-1],dp[i-1][j]);
			ans=min(ans,dp[i][j]+a[i][j]+C*(i+j));
			dp[i][j]=min(dp[i][j],a[i][j]-C*(i+j));
		}
	}
}
signed main(){
	cin>>n>>m>>C;
	for(int i=1;i<=n;i++)
		for(int j=1;j<=m;j++)
			cin>>a[i][j];
	DP();
	for(int i=1;i<=n;i++){
		int l=1,r=m;
		while(l<r){
			swap(a[i][l],a[i][r]);
			l++,r--;
		}
	}
	DP();
	cout<<ans<<endl;
	return 0;
}

赛时写假了边界,宇巨一波奇技淫巧强行AC的代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ll, ll>PLL;
typedef pair<int, int>PII;
typedef pair<double, double>PDD;
#define I_int ll
inline ll read()
{
    ll x = 0, f = 1;
    char ch = getchar();
    while(ch < '0' || ch > '9')
    {
        if(ch == '-')f = -1;
        ch = getchar();
    }
    while(ch >= '0' && ch <= '9')
    {
        x = x * 10 + ch - '0';
        ch = getchar();
    }
    return x * f;
}

inline void out(ll x){
	if (x < 0) x = ~x + 1, putchar('-');
	if (x > 9) out(x / 10);
	putchar(x % 10 + '0');
}

inline void write(ll x){
	if (x < 0) x = ~x + 1, putchar('-');
	if (x > 9) write(x / 10);
	putchar(x % 10 + '0');
	puts("");
}

#define read read()
#define closeSync ios::sync_with_stdio(0);cin.tie(0);cout.tie(0)
#define multiCase int T;cin>>T;for(int t=1;t<=T;t++)
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i<(b);i++)
#define per(i,a,b) for(int i=(a);i>=(b);i--)
#define perr(i,a,b) for(int i=(a);i>(b);i--)
ll ksm(ll a, ll b, ll p)
{
    ll res = 1;
    while(b)
    {
        if(b & 1)res = res * a % p;
        a = a * a % p;
        b >>= 1;
    }
    return res;
}
const int inf = 0x3f3f3f3f;
#define PI acos(-1)
const int maxn=4e5+100;

ll n,m,c,a[1100][1100],dp[1100][1100],dp1[1100][1100];
struct Node{
	ll x,y,val;
}t[1000009];
bool cmp(Node x,Node y)
{
	return x.val<y.val;
}
int main(){
	n=read,m=read,c=read;
	ll cnt=0;
	rep(i,1,n) rep(j,1,m) {
		a[i][j]=read,dp[i][j]=1e18,dp1[i][j]=1e18;
		t[++cnt] = {i,j,a[i][j]};
		}
	if(n*m<=30000)
	{
		
		ll anss = 1e18;
		sort(t+1,t+1+cnt,cmp);
		rep(i,1,min(n*m,30000ll))		rep(j,1,min(n*m,30000ll))
		{
			if(i==j) continue;
			ll x1,y1,x2,y2,val1,val2;
			x1 = t[i].x,y1 = t[i].y,val1 = t[i].val;
			x2 = t[j].x,y2 = t[j].y,val2 = t[j].val;
			ll temp = c*(abs(x1-x2)+abs(y1-y2)) +val1+val2;
			anss = min(anss,temp);
		}
		
		printf("%lld",anss);
		return 0;
	}
	ll res=1e18;
	for(int i=n;i;i--)
		for(int j=m;j;j--){
			if(i==n&&j==m){
				dp[i][j]=a[i][j]+c*i+c*j;
				continue;
			}
			ll now=a[i][j]-c*i-c*j;
			ll las=1e18;
			if(i+1<=n&&j+1<=m) las=min(las,dp[i+1][j+1]);
			if(i+1<=n) las=min(las,dp[i+1][j]);
			if(j+1<=m) las=min(las,dp[i][j+1]);
			res=min(res,now+las);
			dp[i][j]=min(dp[i][j],a[i][j]+c*i+c*j);
			if(i+1<=n&&j+1<=m) dp[i][j]=min(dp[i][j],dp[i+1][j+1]);
			if(i+1<=n) dp[i][j]=min(dp[i][j],dp[i+1][j]);
			if(j+1<=m) dp[i][j]=min(dp[i][j],dp[i][j+1]);
		}
	for(int i=1;i<=n;i++){
		for(int j=m;j;j--){
			if(i==1&&j==m){
				dp1[i][j]=a[i][j]+c*i+c*j;
				continue;
			}
			ll now=a[i][j]+c*i-c*j;
			ll las=1e18;
			if(i-1>=1&&j+1<=m) las=min(las,dp1[i-1][j+1]);
			if(i-1>=1) las=min(las,dp1[i-1][j]);
			if(j+1<=m) las=min(las,dp1[i][j+1]);
			res=min(res,now+las);
			dp1[i][j]=min(dp1[i][j],a[i][j]-c*i+c*j);
			if(i-1>=1&&j+1<=m) dp1[i][j]=min(dp1[i][j],dp1[i-1][j+1]);
			if(i-1>=1) dp1[i][j]=min(dp1[i][j],dp1[i-1][j]);
			if(j+1<=m) dp1[i][j]=min(dp1[i][j],dp1[i][j+1]);
		}
	}
	printf("%lld\n",res);
	
	return 0;
}
/*
-4999000000****1061109567****3****2
-4999000000****1061109567****2****3
-3937890433
2001000000 3001000000 4000000001 
3001000000 4001000000 5001000000 
4000000001 5001000000 6001000000 


*/












评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

豆沙睡不醒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值