CF301D.Yaroslav and Divisors(扫描线+树状数组)

Yaroslav and Divisors

原题链接

思路:

首先,朴素的暴力做法很好想,对于每次询问的区间都 O ( n 2 ) O(n^2) O(n2)的去遍历,计算数量;考虑怎么优化。
由于询问的点对是由两个数组成的,所以可以先离线,对右端点排序,进行降维操作,然后可以枚举右端点,计算前面的贡献。
每次枚举到某个右端点 x x x时,先将 x x x前面的贡献加上,再对每个右端点为 x x x的询问进行查询。
但是,对于每一个 x x x,如果每次都暴力找前面和他成因子的数,时间复杂度又会退化成 n 2 n^2 n2,可以先预处理出每个数的因子位置,每次修改的时候直接修改这些位置。
要用到的是单点修改+区间查询,树状数组即可维护。
具体做法是:
1. 1. 1.对于给定的序列的每个数都统计比这个数的下标小的因子的位置;
2. 2. 2.将询问离线下来,对于每个右端点,存储询问的左端点跟询问下标;存储下标是因为这里进行了离线操作。
3. 3. 3.从小到大枚举右端点,对于每一个右端点,先将下标比他小的因子个数加上,即将每个因子的位置都 + 1 +1 +1,表示该右端点与该因子对答案的贡献是 1 1 1;再询问 [ l , r ] [l,r] [l,r]的答案,即 q u e r y ( r ) − q u e r y ( l − 1 ) query(r)-query(l-1) query(r)query(l1);

代码:

// Problem: D. Yaroslav and Divisors
// Contest: Codeforces - Codeforces Round #182 (Div. 1)
// URL: http://codeforces.com/problemset/problem/301/D
// Memory Limit: 256 MB
// Time Limit: 2000 ms
// Author:Cutele
// 
// Powered by CP Editor (https://cpeditor.org)

#pragma GCC optimize(2)
#pragma GCC optimize(3,"Ofast","inline")
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ll, ll>PLL;
typedef pair<int, int>PII;
typedef pair<double, double>PDD;
#define I_int ll
inline ll read(){ll x = 0, f = 1;char ch = getchar();while(ch < '0' || ch > '9'){if(ch == '-')f = -1;ch = getchar();}while(ch >= '0' && ch <= '9'){x = x * 10 + ch - '0';ch = getchar();}return x * f;}

inline void write(ll x){if (x < 0) x = ~x + 1, putchar('-');if (x > 9) write(x / 10);putchar(x % 10 + '0');}

#define read read()
#define closeSync ios::sync_with_stdio(0);cin.tie(0);cout.tie(0)
#define multiCase int T;cin>>T;for(int t=1;t<=T;t++)
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i<(b);i++)
#define per(i,a,b) for(int i=(a);i>=(b);i--)
#define perr(i,a,b) for(int i=(a);i>(b);i--)

ll ksm(ll a, ll b,ll mod){ll res = 1;while(b){if(b&1)res=res*a%mod;a=a*a%mod;b>>=1;}return res;}

const int maxn=2e5+7;

int a[maxn],id[maxn],n,m,ans[maxn],tr[maxn];
vector<int>g[maxn];
vector<PII>q[maxn];

int lowbit(int x){
	return x&-x;
}

void update(int pos,int val){
	while(pos<=n){
		tr[pos]+=val;
		pos+=lowbit(pos);
	}
}

int query(int pos){
	int res=0;
	while(pos){
		res+=tr[pos];
		pos-=lowbit(pos);
	}
	return res;
}

int main(){
	n=read,m=read;
	rep(i,1,n) a[i]=read,id[a[i]]=i;
	for(int i=1;i<=n;i++){
		for(int j=i;j<=n;j+=i){
			int u=id[i],v=id[j];
			if(u<v) swap(u,v);
			g[u].push_back(v);
		}
	}
	rep(i,1,m){
		int l=read,r=read;
		q[r].push_back({l,i});
	}
	
	rep(i,1,n){
		for(int j=0;j<g[i].size();j++){
			int t=g[i][j];
			update(t,1);
		}
		for(int j=0;j<q[i].size();j++){
			PII t=q[i][j];
			int l=t.first,now=t.second;
			ans[now]=query(i)-query(l-1);
		}
	}
	
	rep(i,1,m) printf("%d\n",ans[i]);
	
	
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

豆沙睡不醒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值