Yaroslav and Divisors
思路:
首先,朴素的暴力做法很好想,对于每次询问的区间都
O
(
n
2
)
O(n^2)
O(n2)的去遍历,计算数量;考虑怎么优化。
由于询问的点对是由两个数组成的,所以可以先离线,对右端点排序,进行降维操作,然后可以枚举右端点,计算前面的贡献。
每次枚举到某个右端点
x
x
x时,先将
x
x
x前面的贡献加上,再对每个右端点为
x
x
x的询问进行查询。
但是,对于每一个
x
x
x,如果每次都暴力找前面和他成因子的数,时间复杂度又会退化成
n
2
n^2
n2,可以先预处理出每个数的因子位置,每次修改的时候直接修改这些位置。
要用到的是单点修改+区间查询,树状数组即可维护。
具体做法是:
1.
1.
1.对于给定的序列的每个数都统计比这个数的下标小的因子的位置;
2.
2.
2.将询问离线下来,对于每个右端点,存储询问的左端点跟询问下标;存储下标是因为这里进行了离线操作。
3.
3.
3.从小到大枚举右端点,对于每一个右端点,先将下标比他小的因子个数加上,即将每个因子的位置都
+
1
+1
+1,表示该右端点与该因子对答案的贡献是
1
1
1;再询问
[
l
,
r
]
[l,r]
[l,r]的答案,即
q
u
e
r
y
(
r
)
−
q
u
e
r
y
(
l
−
1
)
query(r)-query(l-1)
query(r)−query(l−1);
代码:
// Problem: D. Yaroslav and Divisors
// Contest: Codeforces - Codeforces Round #182 (Div. 1)
// URL: http://codeforces.com/problemset/problem/301/D
// Memory Limit: 256 MB
// Time Limit: 2000 ms
// Author:Cutele
//
// Powered by CP Editor (https://cpeditor.org)
#pragma GCC optimize(2)
#pragma GCC optimize(3,"Ofast","inline")
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ll, ll>PLL;
typedef pair<int, int>PII;
typedef pair<double, double>PDD;
#define I_int ll
inline ll read(){ll x = 0, f = 1;char ch = getchar();while(ch < '0' || ch > '9'){if(ch == '-')f = -1;ch = getchar();}while(ch >= '0' && ch <= '9'){x = x * 10 + ch - '0';ch = getchar();}return x * f;}
inline void write(ll x){if (x < 0) x = ~x + 1, putchar('-');if (x > 9) write(x / 10);putchar(x % 10 + '0');}
#define read read()
#define closeSync ios::sync_with_stdio(0);cin.tie(0);cout.tie(0)
#define multiCase int T;cin>>T;for(int t=1;t<=T;t++)
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i<(b);i++)
#define per(i,a,b) for(int i=(a);i>=(b);i--)
#define perr(i,a,b) for(int i=(a);i>(b);i--)
ll ksm(ll a, ll b,ll mod){ll res = 1;while(b){if(b&1)res=res*a%mod;a=a*a%mod;b>>=1;}return res;}
const int maxn=2e5+7;
int a[maxn],id[maxn],n,m,ans[maxn],tr[maxn];
vector<int>g[maxn];
vector<PII>q[maxn];
int lowbit(int x){
return x&-x;
}
void update(int pos,int val){
while(pos<=n){
tr[pos]+=val;
pos+=lowbit(pos);
}
}
int query(int pos){
int res=0;
while(pos){
res+=tr[pos];
pos-=lowbit(pos);
}
return res;
}
int main(){
n=read,m=read;
rep(i,1,n) a[i]=read,id[a[i]]=i;
for(int i=1;i<=n;i++){
for(int j=i;j<=n;j+=i){
int u=id[i],v=id[j];
if(u<v) swap(u,v);
g[u].push_back(v);
}
}
rep(i,1,m){
int l=read,r=read;
q[r].push_back({l,i});
}
rep(i,1,n){
for(int j=0;j<g[i].size();j++){
int t=g[i][j];
update(t,1);
}
for(int j=0;j<q[i].size();j++){
PII t=q[i][j];
int l=t.first,now=t.second;
ans[now]=query(i)-query(l-1);
}
}
rep(i,1,m) printf("%d\n",ans[i]);
return 0;
}