DataFrame.groupby()函数的各种用法详解

groupby的函数定义:

DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, **kwargs)

在这里插入图片描述

所见 1 :日常用法

import pandas as pd

df = pd.DataFrame({'Gender' : ['男', '女', '男', '男', '男', '男', '女', '女', '女'],
          'name' : ['周杰伦', '蔡依林', '林俊杰', '周杰伦', '林俊杰', '周杰伦', '田馥甄', '蔡依林', '田馥甄'],
          'income' : [4.5, 2.9, 3.8, 3.7, 4.0, 4.1, 1.9, 4.1, 3.2],
         'expenditure' : [1.5, 1.9, 2.8, 1.7, 4.1, 2.5, 1.1, 3.4, 1.2]
         })
#根据其中一列分组
df_expenditure_mean = df.groupby(['Gender']).mean()

#根据其中两列分组
df_expenditure_mean = df.groupby(['Gender', 'name']).mean()

#只对其中一列求均值
df_expenditure_mean = df.groupby(['Gender', 'name'])['income'].mean()

在这里插入图片描述

所见 2 :解决groupby.sum() 后层级索引levels上移的问题

上图中的输出二,虽然是 DataFrame 的格式,但是若需要与其他表匹配的时候,这个格式就有些麻烦了。匹配数据时,我们需要的数据格式是:列名都在第一行,数据行中也不能有 Gender 列这样的合并单元格。因此,我们需要做一些调整,将 as_index 改为 False ,默认是 Ture 。

#不以组标签为索引,通过 as_index 来实现
df_expenditure_mean = df.groupby(['Gender', 'name'], as_index=False).mean()

在这里插入图片描述

所见 3 :解决groupby.apply() 后层级索引levels上移的问题

在所见 2 中我们知道,使用参数 as_index 就可使 groupby 的结果不以组标签为索引,但是后来在使用 groupby.apply() 时发现,as_index 参数失去了效果。如下例所示:

# 使用了 as_index=False,但是从输出结果中可见没起到作用
df_apply = df.groupby(['Gender', 'name'], as_index=False).apply(lambda x: sum(x['income']-x['expenditure'])/sum(x['income']))
df_apply = pd.DataFrame(df_apply,columns=['存钱占比'])#转化成dataframe格式

在这里插入图片描述

解决办法: 加一句df_apply_index = df_apply.reset_index()

# 加一句df_apply_index = df_apply.reset_index()
df_apply = df.groupby(['Gender', 'name'], as_index=False).apply(lambda x: sum(x['income']-x['expenditure'])/sum(x['income']))
df_apply = pd.DataFrame(df_apply,columns=['存钱占比'])#转化成dataframe格式
df_apply_index = df_apply.reset_index()

在这里插入图片描述

所见 4 :groupby函数的分组结果保存成DataFrame

所见 1 中的输出三,明显是 Series ,我们需要将其转化为 DataFrame 格式的数据。

#只对其中一列求均值,并转化为 DataFrame
df_expenditure_mean = df.groupby(['Gender', 'name'], as_index=False)['income'].mean()
df_expenditure_mean = pd.DataFrame(df_expenditure_mean)#转化成dataframe格式
df_expenditure_mean.rename(columns={'income':'收入均值'}, inplace = True)

在这里插入图片描述

ps:
另一种特征拼接:(reset_index 把series变成了dataframe)

df_groupby=df.groupby(by='kh')
print((df_groupby))
df_lastbuytime=df_groupby['dtime'].max().reset_index()
df_firstbuytime=df_groupby['dtime'].min().reset_index()
print((df_lastbuytime))

df_lastbuytime['last_time']=pd.to_datetime('2018-01-03 21:27:28.686000')
df_lastbuytime['T']=df_lastbuytime['last_time']-df_firstbuytime['dtime']
df_lastbuytime['R']=df_lastbuytime['dtime']-df_firstbuytime['dtime']
df_F=df_groupby['djh'].nunique().reset_index().rename(columns={'djh':'F'})
#df_lastbuytime['F']=df_lastbuytime['R_month'].apply(lambda x:x/np.timedelta64(30,'D'))
#df_lastbuytime.to_csv("bg.csv")
#print(df_lastbuytime.head(5))
df_lastbuytime['F']=df_F['F']-1
df_lastbuytime['T']=df_lastbuytime['T'].apply(lambda x:x/np.timedelta64(7,'D'))
df_lastbuytime['R']=df_lastbuytime['R'].apply(lambda x:x/np.timedelta64(7,'D'))
df_lastbuytime=df_lastbuytime[['kh','T','R','F']]
print(df_lastbuytime.head(5))
<think>好的,用户的问题是关于如何在Pandas DataFrame中使用groupby方法,需要提供用法和示例。首先,我需要回忆groupby的基本概念和常见操作步骤。 记得groupby主要用于数据分组,然后对每组应用聚合函数。根据引用中的例子,比如计算平均值,添加后缀,然后重置索引得到新的DataFrame[^1]。这可能是一个常见的用例,应该作为基础示例。 接下来,用户可能需要知道不同的聚合函数如何使用。比如引用4提到可以使用aggfunc参数传入不同的函数,如count或len,生成交叉表[^4]。这里需要说明如何对不同的列应用不同的聚合函数,或者同时应用多个函数。 然后,要考虑到groupby之后的对象类型,比如返回的是SeriesGroupBy还是DataFrameGroupBy对象,如引用2所示,这取决于选择的是单列还是多列[^2]。这可能会影响后续的方法调用,需要解释清楚。 另外,用户可能想知道如何将分组后的结果转换回DataFrame,比如使用reset_index()[^1],或者使用transform和apply方法进行更灵活的操作。这部分需要给出具体的代码示例,帮助用户理解如何操作。 还要注意LaTeX格式的要求,行内公式用$...$,独立公式用$$...$$。不过在这个问题中可能数学公式较少,但如果有涉及统计的部分,可能需要用到,比如标准差的计算。 需要检查是否有遗漏的常见用法,比如分组后的过滤(filter)、转换(transform)和应用(apply)。这些高级功能对于处理复杂的数据分析任务很重要,应该包含在示例中。 最后,生成相关问题时要覆盖用户可能进一步询问的方向,比如性能优化、多列分组、可视化应用等,确保相关问题有针对性,帮助用户深入学习。</think>### Pandas DataFramegroupby方法详解 #### 1. **基础用法** `groupby`方法用于将数据按指定列分组,后接聚合函数对分组数据进行计算。例如,按`key1`列分组并计算平均值: ```python # 按单列分组求均值 grouped = df.groupby('key1').mean() print(type(grouped)) # Output: pandas.core.frame.DataFrame ``` #### 2. **多列分组与多聚合函数** 可指定多列分组,并为不同列应用不同聚合函数: ```python # 按多列分组,对data1列求和,data2列计算标准差 result = df.groupby(['key1', 'key2']).agg({ 'data1': 'sum', 'data2': 'std' }).reset_index() ``` 此时结果类型为DataFrame,若需添加后缀可操作: ```python result = result.add_suffix('_Stats').reset_index() # 添加后缀并重置索引 ``` #### 3. **分组对象类型** 分组操作返回的对象类型取决于输入数据类型: - 单列选择返回`SeriesGroupBy`:`df['data1'].groupby(df['key1'])` - 多列选择返回`DataFrameGroupBy`:`df[['data1', 'data2']].groupby('key1')` #### 4. **高级操作示例 **(1) 使用`transform`保留原数据维度** ```python # 为每行添加组内均值 df['group_mean'] = df.groupby('key1')['data1'].transform('mean') ``` **(2) 筛选分组数据** ```python # 保留组内data2总和大于10的分组 filtered = df.groupby('key1').filter(lambda x: x['data2'].sum() > 10) ``` #### 5. 交叉表生成 结合`pivot_table`可生成多维分析表: ```python tips.pivot_table(values='tip_pct', index=['time', 'smoker'], columns='day', aggfunc=len, margins=True) # 统计各分组条目数 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值