45届ICPC模拟赛 E Eat Walnuts(区间dp)

题意:

n个数,每次去掉一个数的代价,是该数前后与其之和
询问最后剩余两数的最小代价之和

解题思路:

一开始就想到是区间dp了,但是脑残没有枚举中间状态
另外dp[i][j]应该是保留i,j端点的[i,j]区间的最小值,而不应该仅仅代表是[i,j]区间的最小值
有了定义dp方程就很显然了
dp[i][j]=min(dp[i][k]+dp[k][j]+(a[i]+a[k]+a[j])*(a[i]+a[k]+a[j]))

AC代码:

#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
using namespace std;
const int maxn = 1e2 + 10;
int n;
int a[maxn];
int dp[maxn][maxn];
int cal(int x) {return x * x;}
int main() {
    while (cin >> n) {
        memset(dp, 0, sizeof(dp));
        for (int i = 1; i <= n; i++)
            cin >> a[i];
        for (int len = 3; len <= n; len++)
            for (int l = 1; l + len - 1 <= n; l++) {
                int r = l + len - 1;
                dp[l][r] = inf;
                for (int k = l + 1; k < r; k++) {
                    dp[l][r] = min(dp[l][r], dp[l][k] + dp[k][r] + cal(a[l] + a[k] + a[r]));
                }
            }
        cout << dp[1][n] << endl;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值