Eat Walnuts(区间dp)

原题链接
题意
给你n个坚果。每次不能删第一个和最后一个。删除一个坚果耗费
(a[i]+a[i-1]+a[i+1])^2。求最终删剩下两个坚果最小花费。
题解
f [ i ] [ j ] f[i][j] f[i][j]表示保留 i 和 j 并删除i-j之间坚果的最小花费。
f [ i ] [ j ] = m i n ( f [ i ] [ j ] , f [ i ] [ k ] + f [ k ] [ j ] + p ( a [ i ] + a [ k ] + a [ j ] ) f[i][j]=min(f[i][j],f[i][k]+f[k][j]+p(a[i]+a[k]+a[j]) f[i][j]=min(f[i][j],f[i][k]+f[k][j]+p(a[i]+a[k]+a[j])
len从3开始枚举即可(中间才有坚果可删)。两个及以下没有意义。

#include<bits/stdc++.h>
using namespace std;
const int N=105;
int f[N][N],a[N];
int p(int x)
{
	return x*x;
}
int main()
{
	int n;
	while(cin>>n)
	{
		for(int i=1;i<=n;i++)cin>>a[i];
		for(int len=3;len<=n;len++)
			for(int i=1;i+len-1<=n;i++)
			{
				
				int j=i+len-1;
				f[i][j]=0x3f3f3f3f;
				for(int k=i+1;k<j;k++)
					f[i][j]=min(f[i][j],f[i][k]+f[k][j]+p(a[i]+a[j]+a[k]));
			}
		cout<<f[1][n]<<endl;
	}
	return 0;
	
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值