解题报告(一)E、(BZOJ4589)Hard Nim(博弈论 + FWT)

这篇博客介绍了如何使用博弈论和快速沃尔什变换FWT解决BZOJ4589 Hard Nim问题。博主繁凡提供了高质量的解题思路和代码,帮助读者理解如何在石子游戏中确定获胜策略。通过FWT计算异或和为0的方案数,从而找出后手必胜的局面数量。
摘要由CSDN通过智能技术生成

繁凡出品的全新系列:解题报告系列 —— 超高质量算法题单,配套我写的超高质量题解和代码,题目难度不一定按照题号排序,我会在每道题后面加上题目难度指数( 1 ∼ 5 1 \sim 5 15),以模板题难度 1 1 1 为基准。


这样大家在学习算法的时候就可以执行这样的流程:

%
阅读我的【学习笔记】 / 【算法全家桶】学习算法 ⇒ \Rightarrow 阅读我的相应算法的【解题报告】获得高质量题单 ⇒ \Rightarrow 根据我的一句话题解的提示尝试自己解决问题 ⇒ \Rightarrow 点开我的详细题解链接学习巩固(好耶)
%

题单链接:【解题报告】快速沃尔什变换FWT(ICPC / CCPC / NOIP / NOI / CF / AT / NC / P / BZOJ)超高质量题解 !!!

E、(BZOJ4589)Hard Nim(博弈论 + FWT)

Weblink

#4589. Hard Nim

Problem

Claris和NanoApe在玩石子游戏,他们有n堆石子,规则如下:

  1. Claris和NanoApe两个人轮流拿石子,Claris先拿。

  2. 每次只能从一堆中取若干个,可将一堆全取走,但不可不取,拿到最后1颗石子的人获胜。

不同的初始局面,决定了最终的获胜者,有些局面下先拿的Claris会赢,其余的局面Claris会负。
Claris很好奇,如果这n堆石子满足每堆石子的初始数量是不超过m的质数,而且他们都会按照最优策略玩游戏,那么NanoApe能获胜的局面有多少种。
由于答案可能很大,你只需要给出答案对 1 0 9 + 7 10^9+7 109+7 取模的值。

1 ≤ n ≤ 1 0 9 , 2 ≤ m ≤ 50000 1\le n\le 10^9, 2\le m\le 50000 1n109,2m50000

Solution

其实就是一个 FWT 非常基础的运用,真正懂 FWT 是干嘛的就一定能看出来。

首先本题除去计数就是一个非常基础的 Nim 游戏,结论就是当异或和为 0 0 0 的时候先手必败,也就是后手必胜。而题目要求统计的是后手必胜的局面的数量,显然是一个计数问题,题目就可以抽象成: n n n 个数,每个数取值为 2 ∼ m 2\sim m 2m 的质数,问一共有多少种方案,使得这 n n n 数的异或和为 0 0 0

我们知道FWT能够解决的问题是:

c k = ∑ i ⊕ j = k a i × b j c_k = \sum_{i\oplus j=k}a_i\times b_j ck=ij=k

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

繁凡さん

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值