集合论(ZFC)浅介

        ZFC,全称,Zermelo-Fraenkel Set thoery with axiom of choice,是一种标准的公理化集合论(Axiomatic Set thoery),作为最广泛的数学基础(Foundation of Mathematics),即作为数学的逻辑框架(Logical and Mathematical Framework),使得在这框架(Framework)里做的数学理论间不会产生矛盾,包括各理论的一直性(Consistence)。

        注:类型论(Type Thoery),特别是 Homotopy Type Thoery,被看作是一个新的数学基础。

        要谨记一点,在ZFC中,只有一个类型(Type),就是集合(Set),因此有,Everything is a set。这个,在后续注解中会反复体现。

        也就是,不能把ZFC中提到的对象,严格区分为元素(Element)和集合(Set),而是,元素跟集合只是相对的概念,是包含关系 (membership, ∈)中,包含者为集合,被包含者为元素。由此,某集合可为另一集合的元素,如集合A的幂集(PowerSet)中的元素是集合A的所有子集(Subset)。 

        其中,ZFC 由九个公理(Axiom)进行定义,分别是:

  1. 外延性公理(Axiom of Extensionality)
  2. 配对公理(Axiom of Paring)
  3. 划分图式公理(Axiom Schema of Seperation)
  4. 联合公理(Axiom of Union)
  5. 幂集公理(Axiom of PowerSet)
  6. 无限集公理(Axiom of Infinity)
  7. 替换图式公理(Axiom Schema of Replacement)
  8. 规范公理(Axiom of Regularity)
  9. 选择公理(Axiom of Choice)

        即,基于上述公理(Axioms),定义了整个ZFC集合论,也就是说,看ZFC看作为一个形式系统(Formal System),它的游戏规则(即推演规则 Inference Rules)就由上述公理来定义,由此,推导出ZFC所有的属性(Property)。并且,所有以ZFC为基础的理论,都必须符合其约束。

        另外,ZFC 是通过一阶逻辑(First Order Logic)所表述的,因此,其中非逻辑符号(nonlogical symbols)有:

        1. ∈,表示包含关系(membership)。

        2. =,表示相等关系(equality),即两集合相等。

        由此,其原子表达式(atomic formular)有,x ∈ y 和 x = y ,x、y 为变量,指示某集合。

        另,逻辑符号有,∧,∨,→,↔,∀,∃,其作用对象是表达式(formular)。

        因此,所有的表达式可进行归纳定义(Inductive definition),

        1. 基础(Base case): 原子表达式(Atomic Formular)。

        2. 归纳步骤(Inductive case): 表达式通过逻辑符号产生新的表达式,由此也可以把逻辑符号看作是函数,其输入输出均为表达式。

由此,ZFC的九个公理可通过一阶逻辑的表达式来表示,而公理是不证自明的,也就是说,用于表示该公理的表达式的真值(Truth Value)恒为真(True)。

        后续博文,会对其九个公理进行注解,敬请关注。

        

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

KeithTsui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值