ZFC,全称,Zermelo-Fraenkel Set thoery with axiom of choice,是一种标准的公理化集合论(Axiomatic Set thoery),作为最广泛的数学基础(Foundation of Mathematics),即作为数学的逻辑框架(Logical and Mathematical Framework),使得在这框架(Framework)里做的数学理论间不会产生矛盾,包括各理论的一直性(Consistence)。
注:类型论(Type Thoery),特别是 Homotopy Type Thoery,被看作是一个新的数学基础。
要谨记一点,在ZFC中,只有一个类型(Type),就是集合(Set),因此有,Everything is a set。这个,在后续注解中会反复体现。
也就是,不能把ZFC中提到的对象,严格区分为元素(Element)和集合(Set),而是,元素跟集合只是相对的概念,是包含关系 (membership, ∈)中,包含者为集合,被包含者为元素。由此,某集合可为另一集合的元素,如集合A的幂集(PowerSet)中的元素是集合A的所有子集(Subset)。
其中,ZFC 由九个公理(Axiom)进行定义,分别是:
- 外延性公理(Axiom of Extensionality)
- 配对公理(Axiom of Paring)
- 划分图式公理(Axiom Schema of Seperation)
- 联合公理(Axiom of Union)
- 幂集公理(Axiom of PowerSet)
- 无限集公理(Axiom of Infinity)
- 替换图式公理(Axiom Schema of Replacement)
- 规范公理(Axiom of Regularity)
- 选择公理(Axiom of Choice)
即,基于上述公理(Axioms),定义了整个ZFC集合论,也就是说,看ZFC看作为一个形式系统(Formal System),它的游戏规则(即推演规则 Inference Rules)就由上述公理来定义,由此,推导出ZFC所有的属性(Property)。并且,所有以ZFC为基础的理论,都必须符合其约束。
另外,ZFC 是通过一阶逻辑(First Order Logic)所表述的,因此,其中非逻辑符号(nonlogical symbols)有:
1. ∈,表示包含关系(membership)。
2. =,表示相等关系(equality),即两集合相等。
由此,其原子表达式(atomic formular)有,x ∈ y 和 x = y ,x、y 为变量,指示某集合。
另,逻辑符号有,∧,∨,→,↔,∀,∃,其作用对象是表达式(formular)。
因此,所有的表达式可进行归纳定义(Inductive definition),
1. 基础(Base case): 原子表达式(Atomic Formular)。
2. 归纳步骤(Inductive case): 表达式通过逻辑符号产生新的表达式,由此也可以把逻辑符号看作是函数,其输入输出均为表达式。
由此,ZFC的九个公理可通过一阶逻辑的表达式来表示,而公理是不证自明的,也就是说,用于表示该公理的表达式的真值(Truth Value)恒为真(True)。
后续博文,会对其九个公理进行注解,敬请关注。