基于无人机遥感影像的农田作物识别(五)

本文记录了基于无人机遥感影像的农田作物识别过程,包括在服务器上运行程序,测试模型,分析精度低的原因,并提出解决方案。通过调整训练集比例,复制猕猴桃样本,以及针对不同生长阶段训练单独模型,最终模型精度提升至0.8766,但背景误识别问题仍待解决。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于无人机遥感影像的农田作物识别

明天早上8.30要汇报,今天必须写好这个记录和做PPT,时间来不及哇…明天写文章的话又怕记不住了,枯了枯了,先写吧

如何在服务器上跑程序

上回说到,用服务器跑程序,点这个—输入密码—如图输入命令,即可跑程序。source activate segnet命令很重要,是激活环境的。
在这里插入图片描述
在这里插入图片描述
其中,跑程序前要查看gpu利用率,用nvidia-smi命令:此时都没人用。
在这里插入图片描述
如果需要的话,改这里:在这里插入图片描述

测试昨天的模型

昨天将训练集10000,验证集1000输入,具体参数如下,相当于跑了10000次,得到模型。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值