关于机器学习中迁移学习的一些看法

目前,传统机器学习的研究方向主要包括决策树、随机森林、人工神经网络、贝叶斯学习 ,关联规则,期望最大化,深度学习等方面的研究。
随着大数据时代各行业对数据分析需求的持续增加,通过机器学习高效地获取知识,已逐渐成为当今机器学习技术发展的主要推动力。
目前,机器学习可以基于学习策略被分为两类
(1)模拟人脑的机器学习
(2)直接采用数学方法的机器学习。
在传统分类学习中,为了保证训练得到的分类模型具有准确性和高可靠性,
都有两个基本的假设
(1) 用于学习的训练样本与新的测试样本满足独立同分布;
(2) 必须有足够可用的训练样本才能学习得到一个好的分类模型。
但是,在实际应用中我们发现这两个条件往往无法满足。首先,随着时间的推移,原先可利用的有标签样本数据可能变得不可用,与新来的测试样本的分布产生语义、分布上的缺口。另外,有标签样本数据往往很缺乏,而且很难获得。通俗的讲,就是机器对于新环境不是很适应,无法高效的完成人们的任务,无法达到人们的期望。这就引起了机器学习的另外一个问题,如何利用少量有标签的样本数据甚至是没有的学习问题呢?毕竟当前处于信息化社会,成千上万的机器产生浩如烟海的数据,如果人力去对这些数据标签,是非常不现实的,例如youtobe上一个仅仅7M的视频文件,可能就可以打上100万个标签,那么,如何解决这个问题呢?
这些就涉及到机器学习的前沿了,即迁移学习。当前机器学习分为主要分为两种,有监督学习和无监督学习,而迁移学习的发展,很大程度上促进了无监督学习的进步,使得人工智能可以朝着其被设计的初衷—简化生产,一定程度上解放人力(作为人类工具的延长)。
迁移学习作为一个新兴的研究领域,还很年轻,主要还是集中在算法研究方面,基础理论研究还很不成熟,因此值得我们进一步的研究。
当前迁移学习有了比较大的进展,例如,过去我们在学习方面太注重发现共性本身,但是却没有注意在不同的层次之间发现这些共性。因此,如果把问题分解,转化为不同层次,那么层次化的系统就更容易帮助我们构建机器学习的迁移,以便达到我们的要求。当我们面临一个机器学习问题时,可以通过把问题的结构和内容分离开来而发现不同问题之间的共性。虽然这种方式并不容易,但一旦能够完成地话,系统就能更好地举一反了。再者,过去的迁移学习,往往是有一个领域已经做好了模型,而目的是要把它迁移到一个新的领域,从旧领域迁移到新领域,从一个多数据的领域迁移到少数据的领域,这种叫单步迁移。但是我们现在发现,很多场景是需要被分阶段来的。还有一个问题是,过去的时间里,人们积累了甚至上百种迁移学习的算法,但现在有一个问题,即当遇到一个新的机器学习问题时,不知道到底该用哪个算法。就好比做数学题,掌握了很多方法,一到实际运用,就不知道该选什么方法。其实,既然有了这么多的算法,有了这么多的文章,我们可以把他们这些经验总结起来,用来训练一个新的算法,这个算法它的老师就是所有这些机器学习算法和数据。简言之,就是运用数据反哺自己。如何反哺自己,改进算法,优化训练方案,甚至可以在未来强人工智能的研究上,有着突出贡献。
可靠性上面,小数据,个性化,或成为迁移学习的发展的未来方向。
如何在少量标签甚至是无标签的一些数据中,训练出符合我们要求的数据呢?这是我们应该着重思考的地方。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值