复数的概念

1. 虚数单位:i

引入一个新数 ‘i’,i又叫做虚数单位,并规定:

  • 它的平方等于 -1,即 i² = -1。
  • 实数可以与它进行四则运算,并且原有的加,乘运算律依然成立。
2.定义
  • 复数的定义:形如 a + bi (a,b∈ R)的数叫做复数,其中a叫做复数的实部,b叫做复数的虚部
  • 复数的表示方法:复数通常用小写字母 z 表示,即 z = a + bi(a,b∈R),这种形式也称作复数的代数形式。
  • 复数集:  全体复数构成的集合 C = {a + bi | (a,b ∈ R) }。
3. 分类 (重点)

数集之间的关系: N ⊆ Z ⊆ Q ⊆ R ⊆ C

4. 对比关系
  • 实数之间可以比较大小,复数之间不可以比较大小,但可以相等。即实部 = 实部,虚部 = 虚部。
  • Z1 = a + bi; Z2 = c + di;  若 Z1 = Z2,则 a = b且 c = d。
5. 共轭复数

实部相等,虚部相反的两个复数叫做共轭复数,复数Z的共轭复数用Z(上加一线)来表示。即

z = a + bi 与 z(上加一线) = a - bi 互为共轭复数。

6. 复数的几何形式

{x轴:实轴, y轴:虚轴}

 7. 复数z的模

z = a + bi在复平面上对应的点 z(a,b)到远点的距离。

z = a + bi (a,b∈R), |z| = 根号下 a² + b²

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王子良.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值