如何在GPU上训练模型

如何在GPU上训练模型(基于CIFAR10数据集)


GPU能够通过内部极多进程的并行运算,取得比CPU高一个数量级的运算速度。所以本文描述一下如何在GPU上训练模型。
要想在GPU上训练那么就必须要有NVIDIA独显。如果没有下面提供的代码也可以在CPU上运行。

GPU上训练模型和CPU上操作差不多,只需把驱动改为GPU即可

方法1:在 网络模型、数据(输入inputs,标注targets)、损失函数 三处后面加上 .cuda()


flag = torch.cuda.is_available()
# 网络模型
model = Model()
if flag:
    model = model.cuda()

# 损失函数
loss_fn = nn.CrossEntropyLoss()
if flag:
    loss_fn = loss_fn.cuda()
    
# 数据(输入inputs,标注targets)
imgs, targets = data
if flag:
    imgs = imgs.cuda()
    targets = targets.cuda()

方法2(常用):1.获取gpu[或cpu(防止没有gpu的时候报错)]device;2在 网络模型、数据(输入inputs,标注targets)、损失函数 三处后面加上 .to(device)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 网络模型
model = Model()
model.to(device)

# 损失函数
loss_fn = nn.CrossEntropyLoss()
loss_fn.to(device)
    
# 数据(输入inputs,标注targets)
imgs, targets = data
imgs = imgs.to(device)
targets = targets.to(device)

下面是在GPU上训练一个简单的模型,用来进行图像分类。

准备工作

首先需要安装anaconda平台,安装pytorch,在pytorch官网上选择自己的系统、cuda版本(如果没有独立显卡就选择CPU),将命令复制到conda中执行。
在这里插入图片描述
具体如何操作,网上有很多帖子。

模型训练

网络模型来自the model structural of CRFAR10
在这里插入图片描述
注意:需要在当前的路径下建立一个model_data文件夹用来保存每几轮训练后模型的参数。保存的模型参数要在下一步用来恢复模型。

# 准备数据集
import time
import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

# 定义训练设备,默认为gpu,若没有gpu则在cpu上训练
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

train_data = torchvision.datasets.CIFAR10('../dataset', True, transform=torchvision.transforms.ToTensor(), download=True)
test_data = torchvision.datasets.CIFAR10('../dataset', False, transform=torchvision.transforms.ToTensor(), download=True)
train_data_size = len(train_data)   # 获取训练集长度
test_data_size = len(test_data)     # 获取测试集长度

print("训练集长度:{}, 测试集长度:{}".format(train_data_size, test_data_size))

# 用 DataLoader加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

# 创建网络模型
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)
        return x

model = Model()
model.to(device)

# 损失函数
loss_fn = nn.CrossEntropyLoss()
loss_fn.to(device)

# 优化器
learning_rate = 0.01    # 1e-2 = 10^-2
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

# 设置训练网络的参数
total_train_step = 0    # 训练次数
total_test_step = 0     # 测试次数
epoch = 10              # 训练轮数

# 添加tensorboard
writer = SummaryWriter("../logs_train")


for i in range(epoch):
    print("--------------第{}轮训练开始---------------".format(i+1))

    # 训练开始
    model.train()
    for data in train_dataloader:
        if total_train_step % 100 == 1:
            start_time = time.time()
        imgs, targets = data
        imgs = imgs.to(device)
        targets = targets.to(device)
        outputs = model(imgs)
        loss = loss_fn(outputs, targets)

        # 优化器优化模型
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_train_step += 1
        if total_train_step % 100 == 0:
            end_time = time.time()
            print("训练次数:{},loss:{:.3f},time:{:.3f}".format(total_train_step, loss.item(), end_time-start_time))
            writer.add_scalar('train_loss', loss.item(), total_train_step)

    # 测试开始
    model.eval()
    total_test_loss = 0
    total_accuracy = 0      # 整体正确预测的个数
    with torch.no_grad():   # 清空梯度
        for data in test_dataloader:
            imgs, targets = data
            imgs = imgs.to(device)
            targets = targets.to(device)
            outputs = model(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss += loss
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy += accuracy

    print("测试集上的平均loss: {:.3f}".format(total_test_loss/len(test_dataloader)))
    print("整体测试集上的正确率:{:.3f}".format(total_accuracy/test_data_size))
    writer.add_scalar('test_loss', total_test_loss, total_test_step)
    writer.add_scalar('test_accuracy', total_accuracy/test_data_size, total_test_step)
    total_test_step += 1

    # 保存训练模型
    # torch.save(model, "../model_data/model_{}.pth".format(i+1))
    if i % 100 == 0:
        torch.save(model.state_dict(), "../model_data/model_{}.pth".format(i + 1))
        print("模型已保存!")

writer.close()

可以是由tensorboard查看模型训练的数据,打开终端输tensorboard --logdir=logs_train,把下面地址复制到浏览器就可以看到训练是的数据了
在这里插入图片描述
在这里插入图片描述
可以看到模型在训练集和测试集上的loss都在减小

模型测试

可以下载一些图片测试模型是否能够分类正确,我这里为了方便只下载了一张图片,如果想要测试多张照片可以修改代码完成测试(在image_path获取图片的list,然后分别输入模型中)

import torch
import torchvision
from PIL import Image
from torch import nn

image_path = "../images/dog.jpg"
image = Image.open(image_path)
image = image.convert('RGB')
print(image)

transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32, 32)),
                                            torchvision.transforms.ToTensor()
                                            ])

image = transform(image)
print(image.shape)

class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)
        return x

model = Model()
model.load_state_dict(torch.load("../model_data/model_10.pth", map_location=torch.device('cuda:0')))

image = torch.reshape(image, (1, 3, 32, 32))
model.eval()
with torch.no_grad():
    output = model(image)
print(output)

classes = torchvision.datasets.CIFAR10('../dataset', True, transform=torchvision.transforms.ToTensor(), download=True).classes
print(classes[output.argmax(1)])

这是我测试的图
在这里插入图片描述

在这里插入图片描述

这里是只经过10轮的训练(epoch=10,learning_rate=0.01),可能会在一些照片上出现分类错误的情况,我在服务器上对模型进行了epoch=200,learn_rate=0.0001和epoch=400,learning_rate=0.01的训练,模型参数在这para.zip,需要的话可以下载领取。
学习率太高或者太低都会导致模型的泛化效果不好,可以参考O2U-Net中的环形学习率,个人觉得应该可以提高精度。

  • 5
    点赞
  • 48
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
中文预训练ALBERT模型 概述 中文语料上预训练ALBERT模型:参数更少,效果更好。预训练小模型也能拿下13项NLP任务,ALBERT三大改造登顶GLUE基准、 一键运行10个数据集、9个基线模型、不同任务上模型效果的详细对比,见中文语言理解基准测评 CLUE benchmark 一键运行CLUE中文任务:6个中文分类或句子对任务(新) 使用方式: 1、克隆项目 git clone https://github.com/brightmart/albert_zh.git 2、运行一键运行脚本(GPU方式): 会自动下载模型和所有任务数据并开始运行。 bash run_classifier_clue.sh 执行该一键运行脚本将会自动下载所有任务数据,并为所有任务找到最优模型,然后测试得到提交结果 模型下载 Download Pre-trained Models of Chinese 1、albert_tiny_zh, albert_tiny_zh(训练更久,累积学习20亿个样本),文件大小16M、参数为4M 训练和推理预测速度提升约10倍,精度基本保留,模型大小为bert的1/25;语义相似度数据集LCQMC测试集上达到85.4%,相比bert_base仅下降1.5个点。 lcqmc训练使用如下参数: --max_seq_length=128 --train_batch_size=64 --learning_rate=1e-4 --num_train_epochs=5 albert_tiny使用同样的大规模中文语料数据,层数仅为4层、hidden size等向量维度大幅减少; 尝试使用如下学习率来获得更好效果:{2e-5, 6e-5, 1e-4} 【使用场景】任务相对比较简单一些或实时性要求高的任务,如语义相似度等句子对任务、分类任务;比较难的任务如阅读理解等,可以使用其他大模型。 例如,可以使用Tensorflow Lite在移动端进行部署,本文随后针对这一点进行了介绍,包括如何把模型转换成Tensorflow Lite格式和对其进行性能测试等。 一键运行albert_tiny_zh(linux,lcqmc任务): git clone https://github.com/brightmart/albert_zh cd albert_zh bash run_classifier_lcqmc.sh albert_tiny_google_zh(累积学习10亿个样本,google版本) 模型大小16M、性能与albert_tiny_zh一致 albert_small_google_zh(累积学习10亿个样本,google版本) 速度比bert_base快4倍;LCQMC测试集上比Bert下降仅0.9个点;去掉adam后模型大小18. 2、albert_large_zh,参数量,层数24,文件大小为64M 参数量和模型大小为bert_base的六分之一;在口语化描述相似性数据集LCQMC的测试集上相比ber 3、albert_base_zh(额外训练了1.5亿个实例即 36k steps * batch_size 4096); albert_base_zh(小模型体验版), 参数量12M, 层数12,大小为40M 参数量为bert_base的十分之一,模型大小也十分之一;在口语化描述相似性数据集LCQMC的测试集上相比bert_base下降约0.6~1个点; 相比未预训练,albert_base提升14个点 4、albert_xlarge_zh_177k ; albert_xlarge_zh_183k(优先尝试)参数量,层数24,文件大小为230M 参数量和模型大小为bert_base的二分之一;需要一张大的显卡;完整测试对比将后续添加;batch_si 快速加载 依托于Huggingface-Transformers 2.2.2,可轻松调用以上模型。 tokenizer = AutoTokenizer.from_pretrained("MODEL_NAME") model = AutoModel.from_pretrained("MODEL_NAME") 其中MODEL_NAME对应列表如下: 模型名 MODEL_NAME albert_tiny_google_zh voidful/albert_chinese_tiny albert_small_google_zh voidful/albert_chinese_small albert_base_zh (from google) voidful/albert_chinese_base albert_large_zh (from

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值