相空间重构
1 特征描述
相空间重构的基本思想为:系统中任意变量的变化过程由与之相互作用的分量共同决定,其发展过程也隐含着其他变量的变化规律,故可从变量的变化过程中构建和恢复整个系统的变化规律。针对序列 x 1 , x 2 , ⋯ , x N x_1,x_2,\cdots,x_N x1,x2,⋯,xN,通过坐标延迟重构法,可以将序列映射到一个 d d d维的相空间中,重构后的轨迹矩阵如下。
X = [ x 1 x 1 + τ ⋯ x 1 + ( d − 1 ) τ x 2 x 2 + τ ⋯ x 2 + ( d − 1 ) τ ⋮ ⋮ ⋮ x P x P + τ ⋯ x P + ( d − 1 ) τ ] X= \begin{bmatrix} x_1 & x_{1+\tau} & \cdots & x_{1+(d-1)\tau} \\ x_2 & x_{2+\tau} & \cdots & x_{2+(d-1)\tau} \\ \vdots & \vdots & & \vdots \\ x_P & x_{P+\tau} & \cdots & x_{P+(d-1)\tau} \end{bmatrix} X= <