在算法工程的世界里,总有一些方法,它们就像隐匿于高阶模型阴影之中的宝石一样,虽然不常被人们提及,不过却依然闪烁着智慧的光芒。作为一名长期专注于高性能计算和机器学习算法优化的C++工程师,我始终认为Nadaraya-Watson核回归就是这样一颗明珠。它以其惊人的数学优雅和实现的简洁性,在如今深度学习的热潮中,依然保持着不可替代的价值。
想象一下,一个仅需几行代码就能实现,却能捕捉复杂非线性关系的算法,它不需要大规模训练数据,不需要复杂的优化器,甚至不需要你事先知道数据的结构特征。更让人惊奇的是,这个“看上去尤其简单”的算法竟然默默地隐藏在现代注意力机制的核心理念当中。其实它就仿若一颗藏于暗处的珍珠,静静地等着人们去发觉、去探寻。本文将带您深入了解这一算法的发展历程、内部工作原理及其现代应用,并分享一些基于我多年工程实践的独到见解。
Nadaraya-Watson核回归的历史渊源
Nadaraya-Watson核回归模型的历史,能够追溯至1964年,由苏联统计学家E.A. Nadaraya以及英国统计学家Geoffrey S. Watson分别独立地提出。而且在这个时期,正处在非参数统计方