977 有序数组的平方
题目链接:977. 有序数组的平方 - 力扣(LeetCode)
题目链接:
给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。
输入:nums = [-4,-1,0,3,10]
输出:[0,1,9,16,100]
解释:平方后,数组变为 [16,1,0,9,100],排序后,数组变为 [0,1,9,16,100]
思路:
使用双指针,在ans数组中依次放入大的值
class Solution {
public:
vector<int> sortedSquares(vector<int>& nums) {
int len = nums.size();
int cnt = len - 1;
vector<int> ans(len, 0);
int i = 0, j = len - 1;
while(i <= j)
{
if(nums[i] * nums[i] > nums[j] * nums[j])
{
ans[cnt] = nums[i] * nums[i];
i++;
cnt--;
}
else
{
ans[cnt] = nums[j] * nums[j];
j--;
cnt--;
}
}
return ans;
}
};
209 长度最小的子数组
题目链接:209. 长度最小的子数组 - 力扣(LeetCode)
给定一个含有 n
个正整数的数组和一个正整数 target
。找出该数组中满足其总和大于等于 target
的长度最小的 连续子数组,并返回其长度 。 如果不存在符合条件的子数组,返回 0
。
输入:target = 7, nums = [2,3,1,2,4,3]
输出:2
解释:子数组 [4,3] 是该条件下的长度最小的子数组。
方法一 滑动窗口
都快忘记滑动窗口这个做法了,笔试碰到了好几次连续子数组的题了。
class Solution {
public:
int minSubArrayLen(int target, vector<int>& nums) {
int ans = INT_MAX;
int sum = 0;
int i = 0, len = nums.size();
for(int j = 0; j < len; j++)
{
sum += nums[j];
while(sum >= target)
{
int sublen = j - i + 1;
ans = min(ans, sublen);
sum -= nums[i];
i++;
}
}
return ans == INT_MAX ? 0 : ans;
}
};
方法二 前缀和 + 二分查找
找i,j,使得s[j] - s[i] >= target
,等同于找s[j] >= target + s[i]
class Solution {
public:
int minSubArrayLen(int target, vector<int>& nums) {
int n = nums.size();
if(n == 0) return 0;
int ans = INT_MAX;
vector<int> sum(n + 1, 0);
for(int i = 1; i <= n; i++)
{
sum[i] = sum[i - 1] + nums[i - 1];
}
for(int i = 1; i <= n; i++)
{
int temp = target + sum[i - 1];
auto bound = lower_bound(sum.begin(), sum.end(), temp);
if(bound != sum.end())
{
ans = min(ans, static_cast<int>((bound - sum.begin()) - (i - 1)));
}
}
return ans == INT_MAX ? 0 : ans;
}
};
59 螺旋矩阵Ⅱ
题目链接:59. 螺旋矩阵 II - 力扣(LeetCode)
确定上下左右边界,按照螺旋顺序放置在对应位置
class Solution {
public:
vector<vector<int>> generateMatrix(int n) {
int l = 0, r = n - 1, t = 0, b = n - 1;
vector<vector<int>> ans(n, vector<int>(n, 0));
int x = 1;
while(true)
{
for(int i = l; i <= r; i++) //left to right
{
ans[t][i] = x;
x++;
}
if (++t > b) break;
for(int i = t; i <= b; i++) //top to bottom
{
ans[i][r] = x;
x++;
}
if(l > --r) break;
for(int i = r; i >= l; i--) //right to left
{
ans[b][i] = x;
x++;
}
if(t > --b) break;
for(int i = b; i >= t; i--) //bottom to top
{
ans[i][l] = x;
x++;
}
if(++l > r) break;
}
return ans;
}
};