排队论学习笔记

前言

本文章主要记录了个人的学习情况,参考了通信网络基础(李建东、盛敏)和其他互联网资料(文章图片素材来来自于网络)。
学习目的:理解M/M/1排队论(不涉及泊松和指数分布的具体推导)

M/M/1型排队系统

字母含义(不重要😂)

"A/B/C/D(缺省)"分别对应“到达过程的特征 / 服务时间的的概率分布 / 服务员数量 / 系统容量(缺省,默认为无穷大) ”
第一个M代表 无记忆的泊松过程
第二个M代表 指数分布  (此位置上的G(一般分布)和D(确定分布))
第三个数字1代表 一个服务员

服务过程为泊松过程

泊松分布:单位时间内有n个客户到达的概率( λ \lambda λ是代表客户的平均到达速率)
P n = λ n n ! e − λ ( 1 ) P_n=\frac{\lambda^n}{n!}e^{-\lambda} (1) Pn=n!λneλ1

泊松过程:时间t内有X个客户到达的概率
P n ( t ) = ( λ t ) n n ! e − λ t ( 2 ) P_n( t)=\frac{(\lambda t)^n}{n!}e^{-\lambda t} (2) Pn(t)=n!(λt)neλt2

服务时间的概率分布为指数分布

相继到达的客户之间的时间间隔T的分布情况(换句话说,相继到达的客户之间的时间间隔    ⟺    \iff 时间T内有0个客户到达。)
F ( t ) = P ( T ≤ t ) 在 时 间 t 内 有 客 户 到 达 的 概 率 F(t)=P(T \leq t) \quad 在时间t内有客户到达的概率 F(t)=P(Tt)t

P 0 ( t ) = ( λ t ) 0 0 ! e − λ t 在 时 间 t 内 没 有 客 户 到 达 的 概 率 P_0( t)=\frac{(\lambda t)^0}{0!}e^{-\lambda t} \quad 在时间t内没有客户到达的概率 P0(t)=0!(λt)0eλtt

F ( t ) = P ( T ≤ t ) = 1 − P 0 ( t ) = 1 − e − λ t ( 3 ) F(t)=P(T \leq t) =1-P_0( t)=1-e^{-\lambda t} (3) F(t)=P(Tt)=1P0(t)=1eλt3
对分布函数求导即可得到概率密度函数
p ( t ) = λ e − λ t ( 4 ) p(t)=\lambda e^{-\lambda t} (4) p(t)=λeλt4

可以看出泊松过程描述了时间t内有X个客户到达的概率,而指数分布描述了相继到达的客户之间的时间间隔T的概率。

关键参数推导1🤔

图片来源:opensimply.org
λ 是 平 均 到 达 速 率 , μ 是 平 均 服 务 速 率 \lambda 是平均到达速率 ,\mu是平均服务速率 λμ
由于指数分布的无记忆性,仅从概率分析的角度上看,我们可以把系统中的客户数量当作系统状态。当有客户达到(离开)系统就转移到下一个(上一个)状态。
图片来自网络
系统在稳定状态下转移符合 λ p i = μ p i + 1 \lambda p_i=\mu p_{i+1} λpi=μpi+1(两个方向的速率一致), 带入可得
p 1 = λ μ p 0 = ρ p 0 p 2 = ( λ μ ) 2 p 0 = ρ 2 p 0 . . . . p n = ( λ μ ) n p 0 = ρ n p 0 p_1=\frac{\lambda}{\mu}p_0=\rho p_0\\ p_2={(\frac{\lambda}{\mu})}^2p_0={\rho} ^2p_0\\ ....\\ p_n={(\frac{\lambda}{\mu})}^np_0={\rho} ^np_0 p1=μλp0=ρp0p2=(μλ)2p0=ρ2p0....pn=(μλ)np0=ρnp0

现在的主要问题就是 p 0 p_0 p0怎么求?通过“ p 0 + p 1 + p 2 . . . + p n p_0+p_1+p_2...+p_{n} p0+p1+p2...+pn总和1”这个条件可以得到下面的公式:
∑ n = 0 ∞ p n = ∑ n = 0 ∞ ρ n p 0 = 1 \sum_{n=0}^{\infty}p_n=\sum_{n=0}^{\infty}{\rho} ^np_0=1 n=0pn=n=0ρnp0=1
上面的求和是等比公式的求和,经过简单计算得出 p 0 = 1 − ρ p_0=1-\rho p0=1ρ

关键参数推导2🤔

每个客户的平均时延T(等待时间+处理时间):
首 先 确 定 店 内 客 户 总 人 数 N , N = ∑ n = 0 ∞ n p n = ( 1 − ρ ) ∑ n = 0 ∞ n ρ n = ρ 1 − ρ 通 过 l i t t l e 定 理 可 以 算 出 : T = N λ = 1 μ − λ 首先确定店内客户总人数N,N=\sum_{n=0}^{\infty}np_n=(1-\rho)\sum_{n=0}^{\infty}n{\rho}^n=\frac{\rho}{1-\rho} \\通过little定理可以算出:T=\frac{N}{\lambda}=\frac{1}{\mu-\lambda} NN=n=0npn=(1ρ)n=0nρn=1ρρlittleT=λN=μλ1

每个用户的平均等待时间W
W = 每 个 客 户 的 平 均 时 延 T − 处 理 时 间 1 μ W = T − 1 μ = ρ μ − λ W = 每个客户的平均时延T-处理时间\frac{1}{\mu}\\W=T-\frac{1}{\mu}=\frac{\rho}{\mu-\lambda} W=Tμ1W=Tμ1=μλρ

队列中等待的平均客户数量 W q W_q Wq
由 l i t t l e 可 得 W q = λ W = ρ 2 μ − λ 由little可得 W_q=\lambda W=\frac{\rho^2}{\mu-\lambda} littleWq=λW=μλρ2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值