前言
本文章主要记录了个人的学习情况,参考了通信网络基础(李建东、盛敏)和其他互联网资料(文章图片素材来来自于网络)。
学习目的:理解M/M/1排队论(不涉及泊松和指数分布的具体推导)
M/M/1型排队系统
字母含义(不重要😂)
"A/B/C/D(缺省)"分别对应“到达过程的特征 / 服务时间的的概率分布 / 服务员数量 / 系统容量(缺省,默认为无穷大) ”
第一个M代表 无记忆的泊松过程
第二个M代表 指数分布 (此位置上的G(一般分布)和D(确定分布))
第三个数字1代表 一个服务员
服务过程为泊松过程
泊松分布:单位时间内有n个客户到达的概率(
λ
\lambda
λ是代表客户的平均到达速率)
P
n
=
λ
n
n
!
e
−
λ
(
1
)
P_n=\frac{\lambda^n}{n!}e^{-\lambda} (1)
Pn=n!λne−λ(1)
泊松过程:时间t内有X个客户到达的概率
P
n
(
t
)
=
(
λ
t
)
n
n
!
e
−
λ
t
(
2
)
P_n( t)=\frac{(\lambda t)^n}{n!}e^{-\lambda t} (2)
Pn(t)=n!(λt)ne−λt(2)
服务时间的概率分布为指数分布
相继到达的客户之间的时间间隔T的分布情况(换句话说,相继到达的客户之间的时间间隔
⟺
\iff
⟺时间T内有0个客户到达。)
F
(
t
)
=
P
(
T
≤
t
)
在
时
间
t
内
有
客
户
到
达
的
概
率
F(t)=P(T \leq t) \quad 在时间t内有客户到达的概率
F(t)=P(T≤t)在时间t内有客户到达的概率
P 0 ( t ) = ( λ t ) 0 0 ! e − λ t 在 时 间 t 内 没 有 客 户 到 达 的 概 率 P_0( t)=\frac{(\lambda t)^0}{0!}e^{-\lambda t} \quad 在时间t内没有客户到达的概率 P0(t)=0!(λt)0e−λt在时间t内没有客户到达的概率
F
(
t
)
=
P
(
T
≤
t
)
=
1
−
P
0
(
t
)
=
1
−
e
−
λ
t
(
3
)
F(t)=P(T \leq t) =1-P_0( t)=1-e^{-\lambda t} (3)
F(t)=P(T≤t)=1−P0(t)=1−e−λt(3)
对分布函数求导即可得到概率密度函数
p
(
t
)
=
λ
e
−
λ
t
(
4
)
p(t)=\lambda e^{-\lambda t} (4)
p(t)=λe−λt(4)
可以看出泊松过程描述了时间t内有X个客户到达的概率,而指数分布描述了相继到达的客户之间的时间间隔T的概率。
关键参数推导1🤔
λ
是
平
均
到
达
速
率
,
μ
是
平
均
服
务
速
率
\lambda 是平均到达速率 ,\mu是平均服务速率
λ是平均到达速率,μ是平均服务速率
由于指数分布的无记忆性,仅从概率分析的角度上看,我们可以把系统中的客户数量当作系统状态。当有客户达到(离开)系统就转移到下一个(上一个)状态。
系统在稳定状态下转移符合
λ
p
i
=
μ
p
i
+
1
\lambda p_i=\mu p_{i+1}
λpi=μpi+1(两个方向的速率一致), 带入可得
p
1
=
λ
μ
p
0
=
ρ
p
0
p
2
=
(
λ
μ
)
2
p
0
=
ρ
2
p
0
.
.
.
.
p
n
=
(
λ
μ
)
n
p
0
=
ρ
n
p
0
p_1=\frac{\lambda}{\mu}p_0=\rho p_0\\ p_2={(\frac{\lambda}{\mu})}^2p_0={\rho} ^2p_0\\ ....\\ p_n={(\frac{\lambda}{\mu})}^np_0={\rho} ^np_0
p1=μλp0=ρp0p2=(μλ)2p0=ρ2p0....pn=(μλ)np0=ρnp0
现在的主要问题就是
p
0
p_0
p0怎么求?通过“
p
0
+
p
1
+
p
2
.
.
.
+
p
n
p_0+p_1+p_2...+p_{n}
p0+p1+p2...+pn总和1”这个条件可以得到下面的公式:
∑
n
=
0
∞
p
n
=
∑
n
=
0
∞
ρ
n
p
0
=
1
\sum_{n=0}^{\infty}p_n=\sum_{n=0}^{\infty}{\rho} ^np_0=1
n=0∑∞pn=n=0∑∞ρnp0=1
上面的求和是等比公式的求和,经过简单计算得出
p
0
=
1
−
ρ
p_0=1-\rho
p0=1−ρ。
关键参数推导2🤔
每个客户的平均时延T(等待时间+处理时间):
首
先
确
定
店
内
客
户
总
人
数
N
,
N
=
∑
n
=
0
∞
n
p
n
=
(
1
−
ρ
)
∑
n
=
0
∞
n
ρ
n
=
ρ
1
−
ρ
通
过
l
i
t
t
l
e
定
理
可
以
算
出
:
T
=
N
λ
=
1
μ
−
λ
首先确定店内客户总人数N,N=\sum_{n=0}^{\infty}np_n=(1-\rho)\sum_{n=0}^{\infty}n{\rho}^n=\frac{\rho}{1-\rho} \\通过little定理可以算出:T=\frac{N}{\lambda}=\frac{1}{\mu-\lambda}
首先确定店内客户总人数N,N=n=0∑∞npn=(1−ρ)n=0∑∞nρn=1−ρρ通过little定理可以算出:T=λN=μ−λ1
每个用户的平均等待时间W
W
=
每
个
客
户
的
平
均
时
延
T
−
处
理
时
间
1
μ
W
=
T
−
1
μ
=
ρ
μ
−
λ
W = 每个客户的平均时延T-处理时间\frac{1}{\mu}\\W=T-\frac{1}{\mu}=\frac{\rho}{\mu-\lambda}
W=每个客户的平均时延T−处理时间μ1W=T−μ1=μ−λρ
队列中等待的平均客户数量
W
q
W_q
Wq
由
l
i
t
t
l
e
可
得
W
q
=
λ
W
=
ρ
2
μ
−
λ
由little可得 W_q=\lambda W=\frac{\rho^2}{\mu-\lambda}
由little可得Wq=λW=μ−λρ2