【计算方法】非线性方程

目录

 

概论

预备知识

微积分

十进制小数分数与二进制的转换

 

误差分析

第二章 非线性方程求解

非迭代方法

二分法

试值法 割线法

迭代方法

不动点迭代 线性收敛

牛顿迭代

单根二阶收敛 m重根 收敛速度 1-1/m

割线法 多点迭代

收敛速度

第三章 非线性方程组

范数

向量范数

直接解法

Gauss消元

三角分解 LU分解

迭代解法

Jacobi迭代法

Gauss-Seidel迭代法

超松弛(SOR)迭代法

 

 

负梯度下降法

 


概论

主要内容:设计高效可靠算法获得近似解 解决实际问题

预备知识

微积分

中值定理:均值定理

Taylor展开:在x=x0处利用关于(x=x0)n次多项式逼近函数

十进制小数分数与二进制的转换

分数:将分子分母分别转成二进制,短除

小数:

整数部分,该数对2 求余 将商和余数写下 直到商为0 【结果逆序写出

小数部分:【顺序写出

1.用2乘十进制小数,可以得到积,将积的整数部分取出

2.再用2乘余下的小数部分,又得到一个积,再将积的整数部分取出

3.重复操作,直到积中的小数部分为零,此时0或1为二进制的最后一位,或者达到所要求的精度为止

误差分析

来源:模型误差,观测,舍入(计算机有限长)方法误差(求近似解时出现问题)

近似值P* 精确值P

绝对误差E=|P-P*|

相对误差:R=E/P 绝对误差/精确值

有效数字:评价近似数对真实值而言的有效性

P*作为近似数对P的有效性

误差传播

  1. 加法运算:和的误差=每个加数误差和
  2. 乘法运算:

数值稳定性:输入数据有扰动,计算过程误差不增长

病态问题:模型本身有问题,输入有扰动结果影响较大

减少运算误差的原则:

  1. 避免相近两数相减
  2. 防止“大数吃掉小数” 计算机字长有限 进行加减运算对阶时小数向大数看齐,会舍掉部分小数
  3. 绝对值太小的数不宜做除数
  4. 简化计算步骤,减少运算次数

第二章 非线性方程求解

求解非线性方程的根:

  1. 判断根的存在性
  2. 确定跟的分布范围
  3. 根的精确化

在有根的前提下求方程近似根

最优化问题,找最优解

非迭代方法

二分法

终止条件:

  1. 缺点:
    1. 无法求多根以及偶重根
    2. 收敛速度慢,多跟可通过缩小区间解决
  2. 优点
    1. 简单
    2. 对f(x)要求不高 连续即可

试值法 割线法

  1. 通过两点之间割线与x轴交点确定新的区间
  2. 不可到达零点

迭代方法

重复进行一个计算过程

不动点迭代 线性收敛

f(x)=0  ==x=g(x)【迭代函数】

停止迭代条件,ε为事先给定的精度

收敛条件:

前提:g(x)在[a,b]连续,在[a,b]导函数连续

满足:(1) g(x)的值[a,b] 成立  (2)0<g'(x)<1 【反证法可说明唯一性】

牛顿迭代

单根二阶收敛 m重根 收敛速度 1-1/m

利用傅里叶在某一点进行展开求近似

几何解释

重复一下步骤 用切线方程求f(x)=0的根

提高收敛阶way

割线法 多点迭代

收敛速度 (1+根号5)/2≈1.618

使用差商 代替牛顿迭代的导数 可以不用求导数

迭代公式

几何意义

利用切线斜率 ≈割线斜率

收敛速度

用ek=|xk-x*|定义 lim ek+1/(ek+1)^p=C 则收敛阶为p

第三章 非线性方程组

范数

向量范数

  1. 1 范数 向量绝对值求和
  2. 2范数 向量每一个元素平方开根号
  3. 无穷范数 绝对值最大

矩阵范数

  1. 1范数 每一列元素绝对值求和 最大绝对值之和

  1. 2范数 所有元素平方开根号
  2. 无穷范数

 

矩阵基础

  1. 矩阵不满足交换律
  2. 行列式是一个标量

直接解法

Gauss消元

利用初等变换对方程组转换成上三角矩阵 进行消去然后回代求值

注意:

  1. 行变换和列变换不能同时执行
  2. 每次计算选主元减小误差 消元前利用行变换把最大的放在主对角线上

三角分解 LU分解

不是分解

非奇异矩阵表示为下三角和上三角矩阵 A=LU

再用追赶法 Ly=b 求得y

再带入Ux=y 解x

其中L矩阵为标记矩阵 记录每一次进行系数调整的负数

m21 对于第一列 第二行-第一行所乘系数

eg

对于某些非奇异矩阵不能进行三角分解,引入置换矩阵 对原矩阵进行行变换 即可LU分解

迭代解法

迭代法是一种逐次逼近的方法,与直接法比较, 具有: 程序简单,存储量小的优点。

特别适用于求解系数矩阵为大型稀疏矩阵的方程组。

谱半径

ρ(B) 谱半径:矩阵的特征值的模的最大值

从属矩阵范数 就是1范数 2范数 无穷范数

Jacobi迭代法

求解Ax=b

det(A)非零的矩阵A 系数矩阵分裂成A=D-L-U

D为主对角线矩阵 L下三角 U上三角

若对角线元素有等于0的情况 进行行列式变换

小解释

xi之前的自变量求和,后面的Gauss-sildel优化会利用Xi之前已经算出的数据放进迭代过程

xi之后自变量求和

Gauss-Seidel迭代法

利用算出来的X(k+1) 代替比Xk更接近真实Xk,Xk+1值 会有更快的迭代速度

超松弛(SOR)迭代法

利用第k次迭代值和第k +1次的Gauss-Seidel迭代值作加权平均

就是Gauss-Sildel 迭代公式  ,用高斯赛德尔和上一次xi结果计算加权平均,w=1时超松弛算法即为高斯赛德尔迭代方法

负梯度下降法

梯度下降法是指每次沿着函数值下降最快的方向寻找最小值点,函数值下降最快的方向是函数的负梯度方向

对于正定矩阵找到驻点就找到了最小值

方法一:先垂直于切线下降,直到与另一个切线方向垂直停止

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

普朗克的小铁拳

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值