Hadoop-5-MapReduce

5.1 概述

5.1.1 分布式并行编程

“摩尔定律”, CPU性能大约每隔18个月翻一番
从2005年开始摩尔定律逐渐失效 ,需要处理的数据量快速增加,人们开始借助于分布式并行编程来提高程序性能
分布式程序运行在大规模计算机集群上,可以并行执行大规模数据处理任务,从而获得海量的计算能力
谷歌公司最先提出了分布式并行编程模型MapReduce,Hadoop MapReduce是它的开源实现,后者比前者使用门槛低很多

问题:在MapReduce出现之前,已经有像MPI这样非常成熟的并行计算框架了,那么为什么Google还需要MapReduce?MapReduce相较于传统的并行计算框架有什么优势?

传统并行计算框架MapReduce
集群架构/容错性共享式(共享内存/共享存储),容 错性差非共享式,容错性好
硬件/价格/扩展性刀片服务器、高速网、SAN, 价格贵,扩展性差普通PC机,便宜,扩展性好
编程/学习难度what-how,难what,简单
适用场景实时、细粒度计算、计算密集型批处理、非实时、数据密集型
5.1.2 MapReduce模型简介

MapReduce将复杂的、运行于大规模集群上的并行计算过程高度地抽象到了两个函数:Map和Reduce

  • 编程容易,不需要掌握分布式并行编程细节,也可以很容易把自己的程序运行在分布式系统上,完成海量数据的计算
  • MapReduce采用“分而治之”策略,一个存储在分布式文件系统中的大规模数据集,会被切分成许多独立的分片(split),这些分片可以被多个Map任务并行处理
  • MapReduce设计的一个理念就是“计算向数据靠拢”,而不是“数据向计算靠拢”,因为,移动数据需要大量的网络传输开销
  • MapReduce框架采用了Master/Slave架构,包括一个Master和若干个Slave。Master上运行JobTracker,Slave上运行TaskTracker
  • Hadoop框架是用Java实现的,但是,MapReduce应用程序则不一定要用Java来写
5.1.3 Map和Reduce函数
函数输入输出说明
Map<k1,v1>
如:
<行号,”a b c”>
List(<k2,v2>)
如:
<“a”,1> <“b”,1> <“c”,1>
1.将小数据集进一步解析成一批<key,value> 对,输入Map函数中进行处理;
2.每一个输入的<k1,v1>会输出一批<k2,v2>。<k2,v2>是计算的中间结果
Reduce<k2,List(v2)>
如:
<“a”,<1,1,1>>
<k3,v3>
如:
<“a”,3>
输入的中间结果<k2,List(v2)>中的List(v2 )表示是一批属于同一个k2的value

5.2 MapReduce的体系结构

MapReduce体系结构主要由四个部分组成,分别是:Client、JobTracker、TaskTracker以及Task,具体如下图所示:
在这里插入图片描述

  1. Client
    1. 用户编写的MapReduce程序通过Client提交到JobTracker端
    2. 用户可通过Client提供的一些接口查看作业运行状态
  2. JobTracker
    1. JobTracker负责资源监控和作业调度
    2. JobTracker 监控所有TaskTracker与Job的健康状况,一旦发现失败,就将相应的任务转移到其他节点
    3. JobTracker 会跟踪任务的执行进度、资源使用量等信息,并将这些信息告诉任务调度器(TaskScheduler),而调度器会在资源出现空闲时,选择合适的任务去使用这些资源
  3. TaskTracker
    1. TaskTracker 会周期性地通过“心跳”将本节点上资源的使用情况和任务的运行进度汇报给JobTracker,同时接收JobTracker 发送过来的命令并执行相应的操作(如启动新任务、杀死任务等)
    2. TaskTracker 使用“slot”等量划分本节点上的资源量(CPU、内存等)。一个Task 获取到一个slot 后才有机会运行,而Hadoop调度器的作用就是将各个TaskTracker上的空闲slot分配给Task使用。slot 分为Map slot和 Reduce slot 两种,分别供MapTask 和Reduce Task 使用
  4. Task
    1. Task 分为Map Task 和Reduce Task 两种,均由TaskTracker 启动

5.3 MapReduce工作流程

5.3.1 工作流程概述

在这里插入图片描述

  • 不同的Map任务之间不会进行通信
  • 不同的Reduce任务之间也不会发生任何信息交换
  • 用户不能显式地从一台机器向另一台机器发送消息
  • 所有的数据交换都是通过MapReduce框架自身去实现的
5.3.2 MapReduce各个执行阶段

在这里插入图片描述

在这里插入图片描述

HDFS 以固定大小的block 为基本单位存储数据,而对于MapReduce 而言,其处理单位是split。split 是一个逻辑概念,它只包含一些元数据信息,比如数据起始位置、数据长度、数据所在节点等。它的划分方法完全由用户自己决定。

Map任务的数量
Hadoop为每个split创建一个Map任务,split 的多少决定了Map任务的数目。大多数情况下,理想的分片大小是一个HDFS块.少了影响并行度,多了性能要求高。
在这里插入图片描述

Reduce任务的数量
最优的Reduce任务个数取决于集群中可用的reduce任务槽(slot)的数目
通常设置比reduce任务槽数目稍微小一些的Reduce任务个数(这样可以预留一些系统资源处理可能发生的错误)

5.3.3 Shuffle过程详解
5.3.3.1 Shuffle过程简介

在这里插入图片描述

5.3.3.2 Map端的Shuffle过程

在这里插入图片描述

  • 每个Map任务分配一个缓存

  • MapReduce默认100MB缓存

  • 设置溢写比例0.8

  • 分区默认采用哈希函数

  • 排序是默认的操作

  • 排序后可以合并(Combine)

  • 合并不能改变最终结果

  • 在Map任务全部结束之前进行归并

  • 归并得到一个大的文件,放在本地磁盘

  • 文件归并时,如果溢写文件数量大于预定值(默认是3)则可以再次启动Combiner,少于3不需要

  • JobTracker会一直监测Map任务的执行,并通知Reduce任务来领取数据

合并(Combine)和归并(Merge)的区别:
两个键值对<“a”,1>和<“a”,1>,如果合并,会得到<“a”,2>,如果归并,会得到<“a”,<1,1>>

5.3.3.3 Reduce端的Shuffle过程
  • Reduce任务通过RPC向JobTracker询问Map任务是否已经完成,若完成,则领取数据
  • Reduce领取数据先放入缓存,来自不同Map机器,先归并,再合并,写入磁盘
  • 多个溢写文件归并成一个或多个大文件,文件中的键值对是排序的
  • 当数据很少时,不需要溢写到磁盘,直接在缓存中归并,然后输出给Reduce

在这里插入图片描述

5.3.4 MapReduce应用程序执行过程

在这里插入图片描述

5.4 实例分析:WordCount

5.4.1 WordCount程序任务

在这里插入图片描述

5.4.2 WordCount设计思路

首先,需要检查WordCount程序任务是否可以采用MapReduce来实现
其次,确定MapReduce程序的设计思路
最后,确定MapReduce程序的执行过程

5.4.3 一个WordCount执行过程的实例

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

5.5 MapReduce的具体应用

MapReduce可以很好地应用于各种计算问题

  • 关系代数运算(选择、投影、并、交、差、连接)
  • 分组与聚合运算
  • 矩阵-向量乘法
  • 矩阵乘法

用MapReduce实现关系的自然连接
在这里插入图片描述

  • 假设有关系R(A,B)和S(B,C),对二者进行自然连接操作
  • 使用Map过程,把来自R的每个元组<a,b>转换成一个键值对<b,<R,a>>,其中的键就是属性B的值。把关系R包含到值中,这样做使得我们可以在Reduce阶段,只把那些来自R的元组和来自S的元组进行匹配。类似地,使用Map过程,把来自S的每个元组<b,c>,转换成一个键值对<b,<S,c>>
  • 所有具有相同B值的元组被发送到同一个Reduce进程中,Reduce进程的任务是,把来自关系R和S的、具有相同属性B值的元组进行合并
  • Reduce进程的输出则是连接后的元组<a,b,c>,输出被写到一个单独的输出文件中

在这里插入图片描述

5.6 MapReduce编程实践

5.6.1 任务要求

在这里插入图片描述

5.6.2 编写Map处理逻辑
  • Map输入类型为<key,value>
  • 期望的Map输出类型为<单词,出现次数>
  • Map输入类型最终确定为<Object,text>
  • Map输出类型最终确定为<Text,IntWritable>
public static class MyMapper extends Mapper<Object,Text,Text,IntWritable>{
    private final static IntWritable one = new IntWritable(1);
	private Text word = new Text();
	public void map(Object key, Text value, Context context) throws
IOException,InterruptedException{
		StringTokenizer itr = new StringTokenizer(value.toString());
		while (itr.hasMoreTokens()){
			word.set(itr.nextToken());
			context.write(word,one);
		}
	}
}
5.6.3 编写Reduce处理逻辑
  • 在Reduce处理数据之前,Map的结果首先通过Shuffle阶段进行整
  • Reduce阶段的任务:对输入数字序列进行求和
  • Reduce的输入数据为<key,Iterable>容器
  • Reduce任务的输入数据:
    • <”I”,<1,1>>
    • <”is”,1>
    • ……
    • <”from”,1>
    • <”China”,<1,1,1>>
public static class MyReducer extends
Reducer<Text,IntWritable,Text,IntWritable>{
	private IntWritable result = new IntWritable();
	public void reduce(Text key, Iterable<IntWritable>
values, Context context) throws IOException,InterruptedException{
		int sum = 0;
		for (IntWritable val : values){
			sum += val.get();
		}
		result.set(sum);
		context.write(key,result);
	}
}
5.6.4 编写main方法
public static void main(String[] args) throws Exception{
	Configuration conf = new Configuration(); //程序运行时参数
	String[] otherArgs = new GenericOptionsParser(conf,args).getRemainingArgs();
	if (otherArgs.length != 2){ 
        System.err.println("Usage: wordcount <in> <out>");
		System.exit(2);
	}
	Job job = new Job(conf,"word count"); //设置环境参数
	job.setJarByClass(WordCount.class); //设置整个程序的类名
	job.setMapperClass(MyMapper.class); //添加MyMapper类
	job.setReducerClass(MyReducer.class); //添加MyReducer类
	job.setOutputKeyClass(Text.class); //设置输出类型
	job.setOutputValueClass(IntWritable.class); //设置输出类型
	FileInputFormat.addInputPath(job,new Path(otherArgs[0])); //设置输入文件
	FileOutputFormat.setOutputPath(job,new Path(otherArgs[1])); //设置输出文件
	System.exit(job.waitForCompletion(true)?0:1);
}
5.6.5 编译打包代码以及运行程序

实验步骤

  1. 使用java编译程序,生成.class文件
  2. 将.class文件打包为jar包
  3. 运行jar包(需要启动Hadoop)
  4. 查看结果

Hadoop 2.x 版本中的依赖 jar
Hadoop 2.x 版本中 jar 不再集中在一个 hadoop-core*.jar 中,而是分成多个 jar,如使用 Hadoop 2.6.0 运行 WordCount 实例至少需要如下三个 jar: $HADOOP_HOME/share/hadoop/common/hadoop-common-2.6.0.jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.6.0.jar
$HADOOP_HOME/share/hadoop/common/lib/commons-cli-1.2.jar
通过命令 hadoop classpath 可以得到运行 Hadoop 程序所需的全部classpath信息

将 Hadoop 的 classhpath 信息添加到 CLASSPATH 变量中,在 ~/.bashrc中增加如下几行:

export HADOOP_HOME=/usr/local/hadoop export
CLASSPATH=$($HADOOP_HOME/bin/hadoop classpath):$CLASSPATH

执行 source ~/.bashrc 使变量生效,接着就可以通过 javac 命令编译WordCount.java

$ javac WordCount.java

接着把 .class 文件打包成 jar,才能在 Hadoop 中运行:

jar -cvf WordCount.jar ./WordCount*.class

运行程序:

/usr/local/hadoop/bin/hadoop jar WordCount.jar WordCount input output
5.6.6 Hadoop中执行MapReduce任务的几种方式
  • Hadoop jar
  • Pig
  • Hive
  • Python
  • Shell脚本
  • 在解决问题的过程中,开发效率、执行效率都 是要考虑的因素,不要太局限于某一种方法
5.6.7 完整代码
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCount{
	public static class MyMapper extends Mapper<Object,Text,Text,IntWritable>{
		private final static IntWritable one = new IntWritable(1);
		private Text word = new Text();
		public void map(Object key, Text value, Context context) throws IOException,InterruptedException{
			StringTokenizer itr = new StringTokenizer(value.toString());
			while (itr.hasMoreTokens()){
				word.set(itr.nextToken());
				context.write(word,one);
			}
		}
	}
	public static class MyReducer extends Reducer<Text,IntWritable,Text,IntWritable>{
		private IntWritable result = new IntWritable();
		public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException,InterruptedException{
			int sum = 0;
			for (IntWritable val : values){
				sum += val.get();
			}
			result.set(sum);
			context.write(key,result);
		}
	}
public static void main(String[] args) throws Exception{
	Configuration conf = new Configuration();
	String[] otherArgs = new GenericOptionsParser(conf,args).getRemainingArgs();
	if (otherArgs.length != 2){
		System.err.println("Usage: wordcount <in> <out>");
		System.exit(2);
	}
	Job job = new Job(conf,"word count");
	job.setJarByClass(WordCount.class);
	job.setMapperClass(MyMapper.class);
	job.setReducerClass(MyReducer.class);
	job.setOutputKeyClass(Text.class);
	job.setOutputValueClass(IntWritable.class);
	FileInputFormat.addInputPath(job,new Path(otherArgs[0]));
	FileOutputFormat.setOutputPath(job,new Path(otherArgs[1]));
	System.exit(job.waitForCompletion(true)?0:1);
	} 
}

5.8 本章小结

  • 本章介绍了MapReduce编程模型的相关知识。MapReduce将复杂的、运行于大规模集群上的并行计算过程高度地抽象到了两个函数:Map和Reduce,并极大地方便了分布式编程工作,编程人员在不会分布式并行编程的情况下,也可以很容易将自己的程序运行在分布式系统上,完成海量数据集的计算
  • MapReduce执行的全过程包括以下几个主要阶段:从分布式文件系统读入数据、执行Map任务输出中间结果、通过 Shuffle阶段把中间结果分区排序整理后发送给Reduce任务、执行Reduce任务得到最终结果并写入分布式文件系统。在这几个阶段中,Shuffle阶段非常关键,必须深刻理解这个阶段的详细执行过程
  • MapReduce具有广泛的应用,比如关系代数运算、分组与聚合运算、矩阵-向量乘法、矩阵乘法等
  • 本章最后以一个单词统计程序为实例,详细演示了如何编写MapReduce程序代码以及如何运行程序
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值