5.1 概述
5.1.1 分布式并行编程
“摩尔定律”, CPU性能大约每隔18个月翻一番
从2005年开始摩尔定律逐渐失效 ,需要处理的数据量快速增加,人们开始借助于分布式并行编程来提高程序性能
分布式程序运行在大规模计算机集群上,可以并行执行大规模数据处理任务,从而获得海量的计算能力
谷歌公司最先提出了分布式并行编程模型MapReduce,Hadoop MapReduce是它的开源实现,后者比前者使用门槛低很多
问题:在MapReduce出现之前,已经有像MPI这样非常成熟的并行计算框架了,那么为什么Google还需要MapReduce?MapReduce相较于传统的并行计算框架有什么优势?
传统并行计算框架 | MapReduce | |
---|---|---|
集群架构/容错性 | 共享式(共享内存/共享存储),容 错性差 | 非共享式,容错性好 |
硬件/价格/扩展性 | 刀片服务器、高速网、SAN, 价格贵,扩展性差 | 普通PC机,便宜,扩展性好 |
编程/学习难度 | what-how,难 | what,简单 |
适用场景 | 实时、细粒度计算、计算密集型 | 批处理、非实时、数据密集型 |
5.1.2 MapReduce模型简介
MapReduce将复杂的、运行于大规模集群上的并行计算过程高度地抽象到了两个函数:Map和Reduce
- 编程容易,不需要掌握分布式并行编程细节,也可以很容易把自己的程序运行在分布式系统上,完成海量数据的计算
- MapReduce采用“分而治之”策略,一个存储在分布式文件系统中的大规模数据集,会被切分成许多独立的分片(split),这些分片可以被多个Map任务并行处理
- MapReduce设计的一个理念就是“计算向数据靠拢”,而不是“数据向计算靠拢”,因为,移动数据需要大量的网络传输开销
- MapReduce框架采用了Master/Slave架构,包括一个Master和若干个Slave。Master上运行JobTracker,Slave上运行TaskTracker
- Hadoop框架是用Java实现的,但是,MapReduce应用程序则不一定要用Java来写
5.1.3 Map和Reduce函数
函数 | 输入 | 输出 | 说明 |
---|---|---|---|
Map | <k1,v1> 如: <行号,”a b c”> | List(<k2,v2>) 如: <“a”,1> <“b”,1> <“c”,1> | 1.将小数据集进一步解析成一批<key,value> 对,输入Map函数中进行处理; 2.每一个输入的<k1,v1>会输出一批<k2,v2>。<k2,v2>是计算的中间结果 |
Reduce | <k2,List(v2)> 如: <“a”,<1,1,1>> | <k3,v3> 如: <“a”,3> | 输入的中间结果<k2,List(v2)>中的List(v2 )表示是一批属于同一个k2的value |
5.2 MapReduce的体系结构
MapReduce体系结构主要由四个部分组成,分别是:Client、JobTracker、TaskTracker以及Task,具体如下图所示:
- Client
- 用户编写的MapReduce程序通过Client提交到JobTracker端
- 用户可通过Client提供的一些接口查看作业运行状态
- JobTracker
- JobTracker负责资源监控和作业调度
- JobTracker 监控所有TaskTracker与Job的健康状况,一旦发现失败,就将相应的任务转移到其他节点
- JobTracker 会跟踪任务的执行进度、资源使用量等信息,并将这些信息告诉任务调度器(TaskScheduler),而调度器会在资源出现空闲时,选择合适的任务去使用这些资源
- TaskTracker
- TaskTracker 会周期性地通过“心跳”将本节点上资源的使用情况和任务的运行进度汇报给JobTracker,同时接收JobTracker 发送过来的命令并执行相应的操作(如启动新任务、杀死任务等)
- TaskTracker 使用“slot”等量划分本节点上的资源量(CPU、内存等)。一个Task 获取到一个slot 后才有机会运行,而Hadoop调度器的作用就是将各个TaskTracker上的空闲slot分配给Task使用。slot 分为Map slot和 Reduce slot 两种,分别供MapTask 和Reduce Task 使用
- Task
- Task 分为Map Task 和Reduce Task 两种,均由TaskTracker 启动
5.3 MapReduce工作流程
5.3.1 工作流程概述
- 不同的Map任务之间不会进行通信
- 不同的Reduce任务之间也不会发生任何信息交换
- 用户不能显式地从一台机器向另一台机器发送消息
- 所有的数据交换都是通过MapReduce框架自身去实现的
5.3.2 MapReduce各个执行阶段
HDFS 以固定大小的block 为基本单位存储数据,而对于MapReduce 而言,其处理单位是split。split 是一个逻辑概念,它只包含一些元数据信息,比如数据起始位置、数据长度、数据所在节点等。它的划分方法完全由用户自己决定。
Map任务的数量
Hadoop为每个split创建一个Map任务,split 的多少决定了Map任务的数目。大多数情况下,理想的分片大小是一个HDFS块.少了影响并行度,多了性能要求高。
Reduce任务的数量
最优的Reduce任务个数取决于集群中可用的reduce任务槽(slot)的数目
通常设置比reduce任务槽数目稍微小一些的Reduce任务个数(这样可以预留一些系统资源处理可能发生的错误)
5.3.3 Shuffle过程详解
5.3.3.1 Shuffle过程简介
5.3.3.2 Map端的Shuffle过程
-
每个Map任务分配一个缓存
-
MapReduce默认100MB缓存
-
设置溢写比例0.8
-
分区默认采用哈希函数
-
排序是默认的操作
-
排序后可以合并(Combine)
-
合并不能改变最终结果
-
在Map任务全部结束之前进行归并
-
归并得到一个大的文件,放在本地磁盘
-
文件归并时,如果溢写文件数量大于预定值(默认是3)则可以再次启动Combiner,少于3不需要
-
JobTracker会一直监测Map任务的执行,并通知Reduce任务来领取数据
合并(Combine)和归并(Merge)的区别:
两个键值对<“a”,1>和<“a”,1>,如果合并,会得到<“a”,2>,如果归并,会得到<“a”,<1,1>>
5.3.3.3 Reduce端的Shuffle过程
- Reduce任务通过RPC向JobTracker询问Map任务是否已经完成,若完成,则领取数据
- Reduce领取数据先放入缓存,来自不同Map机器,先归并,再合并,写入磁盘
- 多个溢写文件归并成一个或多个大文件,文件中的键值对是排序的
- 当数据很少时,不需要溢写到磁盘,直接在缓存中归并,然后输出给Reduce
5.3.4 MapReduce应用程序执行过程
5.4 实例分析:WordCount
5.4.1 WordCount程序任务
5.4.2 WordCount设计思路
首先,需要检查WordCount程序任务是否可以采用MapReduce来实现
其次,确定MapReduce程序的设计思路
最后,确定MapReduce程序的执行过程
5.4.3 一个WordCount执行过程的实例
5.5 MapReduce的具体应用
MapReduce可以很好地应用于各种计算问题
- 关系代数运算(选择、投影、并、交、差、连接)
- 分组与聚合运算
- 矩阵-向量乘法
- 矩阵乘法
用MapReduce实现关系的自然连接
- 假设有关系R(A,B)和S(B,C),对二者进行自然连接操作
- 使用Map过程,把来自R的每个元组<a,b>转换成一个键值对<b,<R,a>>,其中的键就是属性B的值。把关系R包含到值中,这样做使得我们可以在Reduce阶段,只把那些来自R的元组和来自S的元组进行匹配。类似地,使用Map过程,把来自S的每个元组<b,c>,转换成一个键值对<b,<S,c>>
- 所有具有相同B值的元组被发送到同一个Reduce进程中,Reduce进程的任务是,把来自关系R和S的、具有相同属性B值的元组进行合并
- Reduce进程的输出则是连接后的元组<a,b,c>,输出被写到一个单独的输出文件中
5.6 MapReduce编程实践
5.6.1 任务要求
5.6.2 编写Map处理逻辑
- Map输入类型为<key,value>
- 期望的Map输出类型为<单词,出现次数>
- Map输入类型最终确定为<Object,text>
- Map输出类型最终确定为<Text,IntWritable>
public static class MyMapper extends Mapper<Object,Text,Text,IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context) throws
IOException,InterruptedException{
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()){
word.set(itr.nextToken());
context.write(word,one);
}
}
}
5.6.3 编写Reduce处理逻辑
- 在Reduce处理数据之前,Map的结果首先通过Shuffle阶段进行整
- Reduce阶段的任务:对输入数字序列进行求和
- Reduce的输入数据为<key,Iterable>容器
- Reduce任务的输入数据:
- <”I”,<1,1>>
- <”is”,1>
- ……
- <”from”,1>
- <”China”,<1,1,1>>
public static class MyReducer extends
Reducer<Text,IntWritable,Text,IntWritable>{
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable>
values, Context context) throws IOException,InterruptedException{
int sum = 0;
for (IntWritable val : values){
sum += val.get();
}
result.set(sum);
context.write(key,result);
}
}
5.6.4 编写main方法
public static void main(String[] args) throws Exception{
Configuration conf = new Configuration(); //程序运行时参数
String[] otherArgs = new GenericOptionsParser(conf,args).getRemainingArgs();
if (otherArgs.length != 2){
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
Job job = new Job(conf,"word count"); //设置环境参数
job.setJarByClass(WordCount.class); //设置整个程序的类名
job.setMapperClass(MyMapper.class); //添加MyMapper类
job.setReducerClass(MyReducer.class); //添加MyReducer类
job.setOutputKeyClass(Text.class); //设置输出类型
job.setOutputValueClass(IntWritable.class); //设置输出类型
FileInputFormat.addInputPath(job,new Path(otherArgs[0])); //设置输入文件
FileOutputFormat.setOutputPath(job,new Path(otherArgs[1])); //设置输出文件
System.exit(job.waitForCompletion(true)?0:1);
}
5.6.5 编译打包代码以及运行程序
实验步骤:
- 使用java编译程序,生成.class文件
- 将.class文件打包为jar包
- 运行jar包(需要启动Hadoop)
- 查看结果
Hadoop 2.x 版本中的依赖 jar
Hadoop 2.x 版本中 jar 不再集中在一个 hadoop-core*.jar 中,而是分成多个 jar,如使用 Hadoop 2.6.0 运行 WordCount 实例至少需要如下三个 jar: $HADOOP_HOME/share/hadoop/common/hadoop-common-2.6.0.jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.6.0.jar
$HADOOP_HOME/share/hadoop/common/lib/commons-cli-1.2.jar
通过命令 hadoop classpath 可以得到运行 Hadoop 程序所需的全部classpath信息
将 Hadoop 的 classhpath 信息添加到 CLASSPATH 变量中,在 ~/.bashrc中增加如下几行:
export HADOOP_HOME=/usr/local/hadoop export
CLASSPATH=$($HADOOP_HOME/bin/hadoop classpath):$CLASSPATH
执行 source ~/.bashrc 使变量生效,接着就可以通过 javac 命令编译WordCount.java
$ javac WordCount.java
接着把 .class 文件打包成 jar,才能在 Hadoop 中运行:
jar -cvf WordCount.jar ./WordCount*.class
运行程序:
/usr/local/hadoop/bin/hadoop jar WordCount.jar WordCount input output
5.6.6 Hadoop中执行MapReduce任务的几种方式
- Hadoop jar
- Pig
- Hive
- Python
- Shell脚本
- 在解决问题的过程中,开发效率、执行效率都 是要考虑的因素,不要太局限于某一种方法
5.6.7 完整代码
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCount{
public static class MyMapper extends Mapper<Object,Text,Text,IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context) throws IOException,InterruptedException{
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()){
word.set(itr.nextToken());
context.write(word,one);
}
}
}
public static class MyReducer extends Reducer<Text,IntWritable,Text,IntWritable>{
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException,InterruptedException{
int sum = 0;
for (IntWritable val : values){
sum += val.get();
}
result.set(sum);
context.write(key,result);
}
}
public static void main(String[] args) throws Exception{
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf,args).getRemainingArgs();
if (otherArgs.length != 2){
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
Job job = new Job(conf,"word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(MyMapper.class);
job.setReducerClass(MyReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job,new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job,new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true)?0:1);
}
}
5.8 本章小结
- 本章介绍了MapReduce编程模型的相关知识。MapReduce将复杂的、运行于大规模集群上的并行计算过程高度地抽象到了两个函数:Map和Reduce,并极大地方便了分布式编程工作,编程人员在不会分布式并行编程的情况下,也可以很容易将自己的程序运行在分布式系统上,完成海量数据集的计算
- MapReduce执行的全过程包括以下几个主要阶段:从分布式文件系统读入数据、执行Map任务输出中间结果、通过 Shuffle阶段把中间结果分区排序整理后发送给Reduce任务、执行Reduce任务得到最终结果并写入分布式文件系统。在这几个阶段中,Shuffle阶段非常关键,必须深刻理解这个阶段的详细执行过程
- MapReduce具有广泛的应用,比如关系代数运算、分组与聚合运算、矩阵-向量乘法、矩阵乘法等
- 本章最后以一个单词统计程序为实例,详细演示了如何编写MapReduce程序代码以及如何运行程序