【PyTorch】softmax回归

1.理论介绍

  • 背景
    在分类问题中,模型的输出层是全连接层,每个类别对应一个输出。我们希望模型的输出 y ^ j \hat{y}_j y^j可以视为属于类 j j j的概率,然后选择具有最大输出值的类别作为我们的预测。
    softmax函数能够将未规范化的输出变换为非负数并且总和为1,同时让模型保持可导的性质,而且不会改变未规范化的输出之间的大小次序。
  • softmax函数
    y ^ = s o f t m a x ( o ) \mathbf{\hat{y}}=\mathrm{softmax}(\mathbf{o}) y^=softmax(o)其中 y ^ j = e x p ( o j ) ∑ k e x p ( o k ) \hat{y}_j=\frac{\mathrm{exp}({o_j})}{\sum_{k}\mathrm{exp}({o_k})} y^j=kexp(ok)exp(oj)
  • softmax是一个非线性函数,但softmax回归的输出仍然由输入特征的仿射变换决定,因此,softmax回归是一个线性模型
  • 为了避免将softmax的输出直接送入交叉熵损失造成的数值稳定性问题,需要将softmax和交叉熵损失结合在一起,具体做法是:不将softmax概率传递到损失函数中, 而是在交叉熵损失函数中传递未规范化的输出,并同时计算softmax及其对数。因此定义交叉熵损失函数时也进行了softmax运算

2. 代码实现

2.1. 主要代码

criterion = nn.CrossEntropyLoss(reduction='none')

2.2. 完整代码

import torch
from torchvision.datasets import FashionMNIST
from torchvision import transforms
from torch.utils.data import DataLoader
from torch import nn
from tensorboardX import SummaryWriter

def load_dataset(batch_size, num_workers):
    """加载数据集"""
    root = "./dataset"
    transform = transforms.Compose([transforms.ToTensor()])
    mnist_train = FashionMNIST(
        root=root, 
        train=True, 
        transform=transform, 
        download=True
    )
    mnist_test = FashionMNIST(
        root=root, 
        train=False, 
        transform=transform, 
        download=True
    )
    dataloader_train = DataLoader(
        mnist_train, 
        batch_size, 
        shuffle=True, 
        num_workers=num_workers
    )
    dataloader_test = DataLoader(
        mnist_test, 
        batch_size, 
        shuffle=False,
        num_workers=num_workers
    )
    return dataloader_train, dataloader_test

def init_network(net):
    """初始化模型参数"""
    def init_weights(m):
        if type(m) == nn.Linear:
            nn.init.normal_(m.weight, mean=0, std=0.01)
            nn.init.constant_(m.bias, val=0)
    if isinstance(net, nn.Module):
        net.apply(init_weights)

class Accumulator:
    """在n个变量上累加"""
    def __init__(self, n):
        self.data = [0.0] * n

    def add(self, *args):
        self.data = [a + float(b) for a, b in zip(self.data, args)]

    def reset(self):
        self.data = [0.0] * len(self.data)

    def __getitem__(self, idx):
        return self.data[idx]
    
def accuracy(y_hat, y):
    """计算预测正确的数量"""
    if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
        y_hat = y_hat.argmax(axis=1)
    cmp = y_hat.type(y.dtype) == y
    return float(cmp.type(y.dtype).sum())

def train(net, dataloader_train, criterion, optimizer, device):
    """训练模型"""
    if isinstance(net, nn.Module):
        net.train()
    train_metrics = Accumulator(3)  # 训练损失总和、训练准确度总和、样本数
    for X, y in dataloader_train:
        X, y = X.to(device), y.to(device)
        y_hat = net(X)
        loss = criterion(y_hat, y)
        optimizer.zero_grad()
        loss.mean().backward()
        optimizer.step()
        train_metrics.add(float(loss.sum()), accuracy(y_hat, y), y.numel())
    train_loss = train_metrics[0] / train_metrics[2]
    train_acc = train_metrics[1] / train_metrics[2]
    return train_loss, train_acc

def test(net, dataloader_test, device):
    """测试模型"""
    if isinstance(net, nn.Module):
        net.eval()
    with torch.no_grad():    
        test_metrics = Accumulator(2)   # 测试准确度总和、样本数
        for X, y in dataloader_test:
            X, y = X.to(device), y.to(device)
            y_hat = net(X)
            test_metrics.add(accuracy(y_hat, y), y.numel())
        test_acc = test_metrics[0] / test_metrics[1]
        return test_acc
    

if __name__ == "__main__":
    # 全局参数设置
    batch_size = 256
    num_workers = 3
    num_epochs = 20
    learning_rate = 0.1
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    # 创建记录器
    writer = SummaryWriter()

    # 加载数据集
    dataloader_train, dataloader_test = load_dataset(batch_size, num_workers)

    # 定义神经网络
    net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10)).to(device)

    # 初始化神经网络
    init_network(net)

    # 定义损失函数
    criterion = nn.CrossEntropyLoss(reduction='none')

    # 定义优化器
    optimizer = torch.optim.SGD(net.parameters(), lr=learning_rate)

    for epoch in range(num_epochs):
        train_loss, train_acc = train(net, dataloader_train, criterion, optimizer, device)
        test_acc = test(net, dataloader_test, device)
        writer.add_scalars("metrics", {
            'train_loss': train_loss, 
            'train_acc': train_acc, 
            'test_acc': test_acc
            }, 
            epoch)
    writer.close()   

2.3. 输出结果

softmax回归

3. Q&A

3.1. 运行过程中出现以下警告:

UserWarning: The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at …\torch\csrc\utils\tensor_numpy.cpp:180.)
return torch.from_numpy(parsed.astype(m[2], copy=False)).view(*s)

该警告的大致意思是给定的NumPy数组不可写,并且PyTorch不支持不可写的张量。这意味着你可以使用张量写入底层(假定不可写)NumPy数组。在将数组转换为张量之前,可能需要复制数组以保护其数据或使其可写。在本程序的其余部分,此类警告将被抑制。因此需要修改C:\Users\%UserName%\anaconda3\envs\%conda_env_name%\lib\site-packages\torchvision\datasets\mnist.py的第498行,将return torch.from_numpy(parsed.astype(m[2], copy=False)).view(*s)中的False改成True

3.2. 定义的神经网络中的nn.Flatten()的作用是什么?

net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10)).to(device)

nn.Flatten()的作用是将图像数据张量展成一维,方便输入后续的全连接层。

3.3. num_workers有什么作用?它的值怎么确定?

num_workers表示加载batch数据的进程数,num_workers=0时只有主进程去加载batch数据。要实现多进程加载数据,加载函数一定要位于if __name__ == "__main__"下。一般开始是将num_workers设置为等于计算机上的CPU内核数量,在此基础上,尝试减少num_workers的值,选择训练速度高时的值。查看CPU内核数量的方法:“任务管理器 > 性能 > CPU”。
CPU内核数

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值