使用PyTorch实现LoRA并加载到网络中的示例代码
使用setattr
和getattr
来动态地修改模型,插入LoRA层。
定义LoRA层:
import torch
import torch.nn as nn
class LoRALayer(nn.Module):
def __init__(self, in_features, out_features, rank, scaling=1.0):
super(LoRALayer, self).__init__()
self.rank = rank
self.scaling = scaling
self.A = nn.Parameter(torch.randn(in_features, rank))
self.B = nn.Parameter(torch.randn(rank, out_features))
self.reset_parameters()
def reset_parameters(self):
nn.init.normal_(self.A, std=0.02)
nn.init.zeros_(self.B)
def forward(self, x):
return x + self.scaling * torch.matmul(torch.matmul(x, self.A), self.B)
定义一个函数将LoRA层插入到预训练模型中:
def insert_lora(model, rank, scaling):
model_dict = [name for name in model.named_modules()]
# print(model_dict)
for name, module in model_dict:
print("name, module",name, module)
if isinstance(module, nn.Linear): # 只针对全连接层插入LoRA
lora_layer = LoRALayer(module.in_features, module.out_features, rank, scaling)
setattr(model, f'{name}_lora', lora_layer)
# 重写前向传播以包含LoRA层
original_forward = module.forward
def new_forward(x):
x = original_forward(x)
lora = getattr(model, f'{name}_lora')
return lora(x)
module.forward = new_forward.__get__(module, type(module))
创建一个简单的网络,应用LoRA:
class SimpleModel(nn.Module):
def __init__(self):
super(SimpleModel, self).__init__()
self.fc1 = nn.Linear(10, 20)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(20, 5)
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
return x
# 创建模型
model = SimpleModel()
print("simple model: ",model)
# 应用LoRA
insert_lora(model, rank=4, scaling=1.0)
# 现在模型包含了LoRA层
print("LoRa model: ",model)
最后,训练模型,只需要更新LoRA层的参数:
# 假设我们有一个数据加载器
# dataloader = ...
# 定义优化器,只优化LoRA层的参数
lora_parameters = [p for n, p in model.named_parameters() if 'lora' in n]
optimizer = torch.optim.Adam(lora_parameters, lr=3e-4)
# 训练代码
for epoch in range(num_epochs):
for inputs, targets in dataloader:
optimizer.zero_grad()
outputs = model(inputs)
loss = nn.functional.mse_loss(outputs, targets)
loss.backward()
optimizer.step()