数学领域著名的“哥德巴赫猜想”的大致意思是:任何一个大于2的偶数总能表示为两个素数之和。比如:24=5+19,其中5和19都是素数。本实验的任务是设计一个程序,验证5000以内的偶数都可以分解成两个素数之和。
输入格式:
输入在一行中给出一个(2, 5000]范围内的偶数N。
输出格式:
在一行中按照格式“N = p + q”输出N的素数分解,其中p \le≤ q均为素数。又因为这样的分解不唯一(例如24还可以分解为7+17),要求必须输出所有解中p最小的解。
输入样例:
24
输出样例:
24 = 5 + 19
思路:这道题目思路比较简单,只要把小于输入的数从2开始一个一个查找是否符合条件,查找到第一个输出即可。
我这里比较简单,设置了一个自定义函数,这样子就方便两边一起比较了。而且会容易看懂一点。
#include <stdio.h>
#include <math.h>
int prime(int );//用于判断是否是素数
int prime(int p)
{
int flag=1;
//个人比较喜欢flag,相当于一个逻辑变量,感觉蛮好用的,嘿嘿
for(int i=2;i<=sqrt(p);i++)
//从2开始查找是否为素数
{
if(p%i==0)
{
flag=0;
break;
}
else flag=1;
}
if(flag==1) return p;//如果是素数返回这个值
else return 0;//不是返回0
}
int main()
{
int m,q;
scanf("%d",&m);
for(int i=2;i<=m/2;i++)
//因为另外一个数是q由m-p得到,所以只需查找一半就好了,接下来都是重复的,所以这里的m/2;
{
q=m-prime(i);//判断q是不是素数
if (prime(q)==q)
{
printf("%d = %d + %d",m,i,q);
break;
}
}
return 0;
}
这样子这道题目就通过了
jio得有用点个赞呗