【基于机械臂触觉伺服的物体操控】论文研读《A control framework for tactile servoing》

在这里插入图片描述

我的毕设题目初定为《基于机械臂触觉伺服的物体操控研究》,这个系列主要用于记录做毕设的过程。因为目前我还在华工本校,这个题目是哈工深导师给我定的,所以我没办法做实验,应该只能在仿真环境中进行算法验证,又或许时间足够的话,我也会考虑搭建一个简易版的实验环境。无论如何,希望能够做出一个满意的毕设作品!

基础概念

触觉反馈:触觉传感器阵列提供的,在时间和空间维度都具有高分辨率和灵敏度的触觉数据信息
触觉伺服:基于触觉反馈的控制器
触觉伺服的应用任务:

  1. 末端滑过物体表面
  2. 跟随特殊的表面结构如“脊部”
  3. 搜索独特的接触模块
  4. 摸索出物体的形状

正是因为相关的任务太多太杂,所以需要有一个通用的框架来统一控制,进行任务实现。
该论文基于已有的未知环境的探索方案 — Raibert’s hybrid position and force control 进行进一步的研究。

论文内容

part2:STATE OF THE ART

《 Tactile sensors and the gripping challenge》:定义了基于触觉的探索和识别的五个阶段:approach(接近), shape(形状), texture(质地), hardness(硬度) and thermal(热量)。
《Acquisition and interpretation of 3-D sensor data from touch》:通过操作物体去识别它,主要采用了多指机器人,先抓物体得到大致形态,再探索物体表面。突出点:跟踪线性特征,探索未知物体的表面,跟踪给点的接触位置。
《What can be inferred from a tactile arrayed sensor in autonomous in-hand manipulation?》:通过分析图像得到接触点坐标,物体姿态和接触力信息。
在这里插入图片描述
《 Using tactile data for real-time feedback》《Edge detection in tactile images》:通过霍夫变换拟合曲线,以此计算传感器坐标系下的受力方向。
《Efficient edge detection from tactile data》 In Proc. IROS, volume 3, 1995.:通过弹性理论获取接触的模型以及二维触觉传感器平面。
《Efficient edge detection from tactile data》 Trans. Robotics and Automation, 16(5), 2000.:提出了首个触觉伺服框架。

本论文就在上面的框架上做了两方面的改进:

  1. 制定了一个灵活的控制器原型,可以很好地结合不同的触觉伺服任务。
  2. 结合了传统的末端伺服和触觉伺服,可以提供便捷的接口来构成复杂的控制策略,以实现抓取,操作以及探测任务。

part3:FEATURE EXTRACTION FROM TACTILE IMAGES

触觉传感器(tactile snesor):16 x 16的方块阵列,每个方块的边长为5mm。每个方块的测量值可以转换为12bit的数值信号(0.1 - 10 kPa)。为了得到一个粗略的力标定,可以在其线性范围内对每个方块的特征测量函数进行反演
在这里插入图片描述
伺服控制任务(需要通过特征提取方法来得到以下的控制变量):

  1. 操作末端的接触位置
  2. 接触力大小
  3. 物体边缘相对于传感器阵列的方向

处理方式:

  1. 采用连接成分分析法,提取相关的区域,并且二值化阈值给的很小,以保证获取足够多的接触信息。
  2. 计算接触力之和 f f f以及压力中心c(COP)
    f = ∑ i j ∈ R f i j , c = f − 1 ∑ i j ∈ R f i j c i j f = \sum_{ij\in R}f_{ij} ,c=f^{-1}\sum_{ij\in R}f_{ij}c_{ij} f=ijRfijc=f1ijRfijcij
    在这里插入图片描述
  3. 计算压强值(对于很多易碎物体,一般控制的都是压强大小而非力大小)
    p = f ∣ R ∣ p = \frac{f}{|R|} p=Rf
  4. 提取物体边缘的线形接触区域的方向角

采用了两种方法:
基于霍夫变换的线性检测: 在灰度图像中拟合线段
图像矩分析: 提取接触区域中的主要成分

在这里插入图片描述

part4 TACTILE SERVOING FRAMEWORK

本论文提出的框架基于 《A hybrid architecture for adaptive robot control》中的control basis framework (CBF) 进一步拓展,实现了将控制任务的变量转换为机器人的关节角度

在这里插入图片描述

该框架的核心思想:通过定义逆雅可比矩阵 J s − 1 J_s^{-1} Js1,将触觉误差的特征向量映射至笛卡尔速度向量 V s V_s Vs,然后通过CBF控制器,控制机器人的关节运动,使传感器运动到计算所得位姿。
控制目标:在接触点运动的同时,保持目标输出力。

V s tact  = P ⋅ J s − 1 ⋅ ( K P ⋅ Δ f ( t ) + K I ⋅ ∫ Δ f ( t ) d t + K D ⋅ ( Δ f ( t ) − Δ f ( t − 1 ) ) ) \begin{aligned} \mathbf{V}_s^{\text {tact }}=P \cdot J_s^{-1} \cdot(& K_P \cdot \Delta \mathbf{f}(t)+K_I \cdot \int \Delta \mathbf{f}(t) d t \\ &\left.+K_D \cdot(\Delta \mathbf{f}(t)-\Delta \mathbf{f}(t-1))\right) \end{aligned} Vstact =PJs1(KPΔf(t)+KIΔf(t)dt+KD(Δf(t)Δf(t1)))
V s t a c t = J s − 1 ⋅ Δ f = ( 1 1 1 0 1 1 0 1 ) ⋅ ( Δ x s Δ y s Δ f Δ α ) \mathbf{V}_s^{\mathrm{tact}}=J_s^{-1} \cdot \Delta \mathbf{f}=\left(\begin{array}{cccc} 1 & & & \\ & 1 & & \\ & & 1 & \\ 0 & 1 & & \\ 1 & 0 & & \\ & & & 1 \end{array}\right) \cdot\left(\begin{array}{c} \Delta x_s \\ \Delta y_s \\ \Delta f \\ \Delta \alpha \end{array}\right) Vstact=Js1Δf= 10111011 ΔxsΔysΔfΔα
P:0-1向量,用于筛选哪些控制成分需要考虑,如diag(1,1,0,0,0,0),就只考虑x,y平面的线性运动。
V s tact  = [ v s , ω s ] \mathbf{V}_s^{\text {tact }} = [\mathbf{v}_s, \mathbf{\omega}_s] Vstact =[vs,ωs]:传感器坐标系下的运动表达。
J s − 1 J_s^{-1} Js1:将微分量映射为线性和旋转运动表达。

Δ x s , Δ y s = > v x , v y \Delta x_s,\Delta y_s => v_x,v_y Δxs,Δys=>vx,vy
Δ f = > v z \Delta f => v_z Δf=>vz
Δ y s , Δ x s = > ω x , ω y \Delta y_s,\Delta x_s => \omega_x,\omega_y Δys,Δxs=>ωx,ωy
Δ α = > ω z \Delta \alpha => \omega_z Δα=>ωz

A d T g s = ( R g s p ^ g s R g s 0 R g s ) A d_{T_{g s}}=\left(\begin{array}{cc} R_{g s} & \hat{\mathbf{p}}_{g s} R_{g s} \\ 0 & R_{g s} \end{array}\right) AdTgs=(Rgs0p^gsRgsRgs)
A d T g s A d_{T_{g s}} AdTgs:坐标系变换矩阵,将传感器坐标系转换到世界坐标系。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

煜个头头

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值