面试汇总——JavaSE——GC

各种博客的整理以及自己的总结

GC

垃圾回收
请简单描述一下垃圾回收器的基本原理是什么?还有垃圾回收器可以马上回收内存吗?并且有什么办法可以主动通知虚拟机进行垃圾回收呢?

当创建一个对象时,GC就会监视这个对象的大小,地址以及使用情况,GC通过有向图的方式管理和记录堆中的所有对象,并确定对象是否有关联的引用或存在引用链,如果没有,GC有义务收集此对象

可以,通过调用System.gc()

请说明一下垃圾回收的优点以及原理。

就不需要程序员手动去回收垃圾,可以实现垃圾的自动回收

请问GC是什么? 还有为什么要有GC?

GC是垃圾回收,当有了GC以后,程序员就可以不用手动的清理垃圾,虚拟机会自动的清理堆中没有再被引用的对象,释放其分配的内存

什么原因会导致minor gc运行频繁?同样的,什么原因又会导致minor gc运行很慢?请简要说明一下

因为每次创建新的对象都是在年轻代的Eden区中,会导致其对象数量多,并且此区中的对象大多数都是朝生夕死的,此时就会触发minor gc,也有可能是因为新生代的空间太小

  • 新生代的空间设置过大,导致对象变得越来越多

  • 对象的引用链过长,进行可达性分析时间过长

  • 采用的垃圾收集器运行效率低

  • Survivor区内存较小,清理后的对象不能装进去,需要移动到老年代,造成移动开销

内存
请问,在java中会存在内存泄漏吗?请简单描述一下。

内存泄漏,说白就是不再被使用的对象或者变量,一直占据着内存,无法回收

造成内存泄漏的事件

  1. 静态集合类:当在类中声明一个静态的HashSet…,当此容器结束时,也无法释放内存,因为静态的变量是与类同生共死,此时就会造成内存泄漏,可以理解为长期对象持有短期对象的引用,导致短生命周期的对象无法释放
  2. 各中连接:I/O连接,数据库连接…,每次的连接都相当一次请求,如果不显示的close()就无法将对象(Connection,PreparedStatement…)回收,就会造成大量对象无法释放,导致内存泄漏
  3. 变量不合理作用域:声明一个成员变量,但只在一个方法中进行引用,此时方法结束,变量并不会释放,也会造成内存泄漏
  4. 改变Hash值:当对集合中的一个变量进行值修改时,此时会改变Hash值,用contains()去检索此集合,也找不到这个对象,就会导致无法将此对象从集合中删除,也会造成内存泄漏
JVM
请简述一下GC算法
  1. 标记-清理算法

    此算法主要针对老年区,由于老年区都是大对象和一些经常用的对象,所以采用标记-清理算法,可以有效的清理不用的对象,标记所以从根节点开始的对象,如果是未被标记的对象,即没有引用的对象,可以将其清理掉,但是此方法会产生较多的内存碎片

  2. 复制算法

    此方法主要用在年轻代,由于年轻代中的大部分对象都是需要被清理掉的,因此采用复制算法,可以方便的将存活的对象进行保存,此方法主要是在垃圾收集时将Eden区和Survivor区中存活的对象放入另一个Survivor区,依次类推,可以将不用的对象全部清理掉

  3. 标记整理算法

    标记整理算法是基于标记-清理算法,是此算法的一种优化,由于标记-清理算法会产生较多的内存碎片,因此产生了标记整理算法,标记整理算法也是从根节点开始标记,将标记(存活)的对象压缩在内存的一端,之后清理边界外的所以对象,此算法可以有效的减少内存的碎片

  4. 增量算法

    如果进行一次垃圾清理是非常耗时的,此时会有长时间的停顿,所以将连接起来线程和用户线程交替进行,让垃圾收集线程每次回收一小片的内存区域,可以有效的减少停顿,并且在此期间用户线程也可以运行,但是由于线程之间的来回切换的消耗,导致垃圾回收的总体成本增加

内存泄漏
请问java中内存泄漏是什么意思?什么场景下会出现内存泄漏的情况?

内存泄漏,说白就是不再被使用的对象或者变量,一直占据着内存,无法回收

造成内存泄漏的事件

  1. 静态集合类:当在类中声明一个静态的HashSet…,当此容器结束时,也无法释放内存,因为静态的变量是与类同生共死,此时就会造成内存泄漏,可以理解为长期对象持有短期对象的引用,导致短生命周期的对象无法释放
  2. 各中连接:I/O连接,数据库连接…,每次的连接都相当一次请求,如果不显示的close()就无法将对象(Connection,PreparedStatement…)回收,就会造成大量对象无法释放,导致内存泄漏
  3. 变量不合理作用域:声明一个成员变量,但只在一个方法中进行引用,此时方法结束,变量并不会释放,也会造成内存泄漏
  4. 改变Hash值:当对集合中的一个变量进行值修改时,此时会改变Hash值,用contains()去检索此集合,也找不到这个对象,就会导致无法将此对象从集合中删除,也会造成内存泄漏

总结

  • 【垃圾回收器】

    • 老年代:Serial Old、ParNew、Parallel Old、CMS、G1
    • 年轻代:Serial、ParNew、Parallel Scavenge
  • 【Full GC的触发场景】

    • System.gc
    • promotion failed:当Eden区的存活的对象在Survivor放不下,并且在OldGen也放不下时,那么promotion failed会触发Full GC
    • CMS:当gc线程和用户线程同时运行的时候,此时用户线程产生的垃圾大于预留的空间,此时会触发CMS(Concurrent Model sweep)
    • 新生代晋升的平均大小大于老年代剩余的空间大小

    当使用G1,CMS 时,FullGC发生的时候是 Serial+SerialOld。
    当使用ParalOld时,FullGC发生的时候是 ParallNew +ParallOld.

  • G1垃圾收集器

    • 优点:不必全堆扫描,并且停顿时间是可控制的
    • 会将堆划分为等大的区域(Eden、Survivor、Old、Humongous(巨型区)),最小1M,最大是32M,默认分为2048个区域
    • 分区
      • Young GC:清理Eden区和Survivo区
      • Mixed GC:清理所有的年轻代和部分老年代
  • 垃圾判断算法

    • 引用计数算法
      • 当一个对象被引用时,此时的计数器会+1,当引用失效时,计数器会-1,而那些引用计数器为0的对象称为垃圾
    • 可达性分析算法
      • 引用技术算法无法解决循环引用的问题,因此有了可达性分析算法,此算法实现原理是,从根节点开始搜索每一个可达的对象,将其搜索的路径称为引用链,每一个有引用链的对象都是可达的,反之是不可达的,但是不可达的对象不一定会被清理,将此对象进行一次检索,如果发现没有与根对象相关联的引用链,那就进行一次标记和筛选,筛选的条件是看其finalize()【此方法的执行具有很大的不确定性】,中是否有与根节点相关联,如果有则自救成功,如果没有那就拜拜了【其实finalize()往往被认为是用来做最后资源的回收】

  • 如有不对的地方欢迎指出,共同进步!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值