数值计算方法 第二章 解线性方程组的直接方法 笔记

本文详细介绍了线性方程组的直接解法,包括Gauss消去法及其改进的主元素消去法,以及直接三角分解法如LUD分解。强调了数值稳定性的重要性,并探讨了特殊矩阵如三对角矩阵和对称正定矩阵的高效解法。此外,还讨论了误差分析和病态矩阵对解的影响,以及超定线性方程组的最小二乘解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

解线性方程组的直接方法

在这里插入图片描述

  • 直接方法:假设计算过程中不产生舍入误差,经过有限次运算可求得方程组的精确解的方法
  • 迭代法:从某个近似值出发,通过构造一个无穷序列去逼近精确解的方法。(一般有限步骤内得不到精确解)

以下介绍几种常用的解线性方程组的直接方法及有关问题。均假设方程组的系数矩阵非奇异,方程组存在唯一解

  • 解线性方程组的直接方法的基本思想是将方程组(2-1)变形为等价的三角形方程组,然后求解

(一)消去法

(1)Gauss消去法

  • 将方程组逐列逐行消去变量,转化为等价的上三角形方程组——消元
  • 按着方程组相反顺序求解上三角形方程组,得原方程组的解——回代过程
    缺点:
  • a k k ( k ) 均 不 为 零 ( 否 则 G a u s s 消 去 法 不 能 进 行 ) a_{kk}^{(k)}均不为零(否则Gauss消去法不能进行) akk(k)Gauss
  • a k k ( k ) 不 为 零 但 其 绝 对 值 很 小 时 用 作 除 数 , 会 导 致 舍 入 误 差 的 严 重 扩 大 a_{kk}^{(k)}不为零但其绝对值很小时用作除数,会导致舍入误差的严重扩大 akk(k) 在这里插入图片描述
消元过程

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

回代过程

按变量的逆序逐步回代得方程组(2-3)的解
在这里插入图片描述
在这里插入图片描述

Gauss消去法的计算量

因为计算机做乘除运算所需时间远大于加减运算,所以这里只考虑乘除运算
消元过程中:
在这里插入图片描述
回代过程中:
在这里插入图片描述
Gauss消去法的乘除总运算量为:
N = n 3 3 + n 2 − n 3 N=\frac{n^3}{3}+n^2-\frac{n}{3} N=3n3+n23n

(2)主元素消去法

针对于Gauss消去法,为了在计算过程中一直舍入误差的增长,应尽量避免小主元的出现。基于这种想法导出了主元素消去法

1.列主元素法

在每次消元前,在要消去未知数的系数中找到绝对值最大的系数作为主元,通过方程组对换将其换到对角线上,然后进行消元
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

2.全主元素法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

要记录每一列代表的是哪一个变量

列主元素法具有良好的数值稳定性,且计算量远低于全主元素法,所以列主元素法是求解中小型稠密线性方程组的最好方法

(二)直接三角分解法

(1)Gauss消去法的矩阵形式

如果用增广矩阵[ A , b A,b A,b]表示线性方程组(2-1),Gauss消去法的消元过程可以通过一串初等矩阵左乘增广矩阵表示
限制条件与Gauss消去法一样

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
因为 L k L_k Lk均为非奇异阵,故它们的逆矩阵存在,容易求出
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
求解 A x = b Ax=b Ax=b等价于求解两个三角形方程组 L y = b Ly=b Ly=b U x = y Ux=y Ux=y

(2)矩阵的直接三角分解

在这里插入图片描述
证明方法:反证法

  • 如何对 A A A进行 L U LU LU分解?

没有太大价值在这里插入图片描述

不太好用在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

经常用(尤其是手写的时候)
在这里插入图片描述
在这里插入图片描述

(3)直接三角分解法

在这里插入图片描述

在这里插入图片描述

和Gauss消去法具有相同的计算量
适用于求解多个系数矩阵相同而右端项不同的线性方程组的解

(4)列主元素的三角分解法

看书,没细讲,但是使用matlab的时候用在这里插入图片描述

知道就可以了这里是引用


MATLAB使用

L U LU LU分解
在这里插入图片描述
在这里插入图片描述


(三)特殊矩阵的三角分解法

(1)解三对角方程组的追赶法

在这里插入图片描述
满足对角占优条件则唯一可分解:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在matlab中直接代数上述公式进行计算,但是这个公式不需要背,只需要理解记忆

(2)平方根法(Cholesky分解法)

对称矩阵: A T = A A^T=A AT=A
在这里插入图片描述
(1)正定矩阵的定义
(2)(3)充要条件
(3)霍尔维斯定理:判断是否是正定矩阵,用顺序主子式
在这里插入图片描述

在这里插入图片描述
LU分解是唯一的

在这里插入图片描述
在这里插入图片描述
依次求第一列,第二列……
每列自上而下计算
在这里插入图片描述
只有对称正定阵才能进行Cholesky分解,使用平方根法求解
在这里插入图片描述

(3)改进的平方根法 L D L T LDL^T LDLT法)

定理:设 A A A是对称正定矩阵,则存在单位下三角矩阵,对角矩阵 D D D,使得 A = L D L T A=LDL^T A=LDLT,其中 D D D的元素为整数(合同性质)
事实上,上面的定理只是需要对称的条件
那么
对称矩阵 A A A,若各界顺序主子式不为零,又 A = L D L T A=LDL^T A=LDLT,但是不能保证 D D D的对角元大于零
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
若线性方程组 A x = b Ax=b Ax=b的系数矩阵为严格对角占优或对称矩阵,则高斯消元法可以进行到底且数值是稳定的

MATLAB函数

在这里插入图片描述

(插入)误差分析
(1)向量和矩阵的范数
(一)向量的范数

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(二)矩阵的范数

在这里插入图片描述
在这里插入图片描述
又三种常用的向量范数,自然就诱导出三种常用的矩阵范数
在这里插入图片描述
谱范数:与特征值相关。
(2——范数(谱范数)) A T A ( A 是 非 奇 异 阵 , 那 么 A^TA(A是非奇异阵,那么 ATAAA^TA 一 定 是 正 定 阵 ) 一定是正定阵) 的最大特征值开根号
A为对称阵,那么 A T A A^TA ATA的最大特征值就是A的最大特征值的平方
F范数就是定义出来的,不是诱导出来的,使用很少。
诱导出来的矩阵范数与相应的向量范数一定是相容的
推导过程无需掌握
在这里插入图片描述

(三)方程组的状态与条件数

在这里插入图片描述

在这里插入图片描述
实际上并没有一个绝对的界限,表明的只是一种程度
在这里插入图片描述
可逆的矩阵特征值非零
逆矩阵的特征值为原矩阵的倒数
在这里插入图片描述
在这里插入图片描述
典型病态矩阵:
在这里插入图片描述

MATLAB使用

在这里插入图片描述

(四)误差

在这里插入图片描述
只有在非病态的情况下才是正确的
当A非病态时,残量的大小可刻画近似解的准确程度,当A并太严重时则不然
在这里插入图片描述

(4)超定线性方程组的最小二乘解

方程个数>未知数个数

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

复习:梯度

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

徐家小河沟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值