链接:http://poj.org/problem?id=1664
题目描述:
把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法。
输入描述:
第一行是测试数据的数目t(0 <= t <= 20)。以下每行均包含二个整数M和N,以空格分开。1<=M,N<=10。
输出描述:
对输入的每组数据M和N,用一行输出相应的K。
输入样例:
1
7 3
输出样例:
8
思路:
用f(m,n)表示m个苹果放n个盘子有多少种方法
m < n时,至少有n-m个盘子空着,去掉这n-m个盘子对方法数不会产生影响,即f(m,n) = f(m,m)
m > n时,分两种情况:
第一种 所有盘子里都有苹果,从每个盘子里拿走一个苹果方法数不会产生影响,即f(m,n) = f(m-n,n)
第二种 至少有一个盘子里没放苹果,即f(m,n) = f(m,n-1)
所以 m > n时,f(m,n) = f(m-n,n)+f(m,n-1)
对f(m,n)递归边界分析
n = 1时,所有苹果只能放一个盘子里,所以f(m,1)返回 1
m = 0时,没有苹果可以放,定义为1种放法,所以f(0,n)返回 1
代码:
#include<stdio.h>
int f(int m,int n)//m个苹果放n个盘子有多少种方法
{
if(n == 1||m == 0) return 1;
if(m < n) return f(m,m);
if(m >= n) return f(m-n,n)+f(m,n-1);
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int m,n;
scanf("%d%d",&m,&n);
printf("%d\n",f(m,n));
}
return 0;
}