POJ1644【放苹果】(递归与回溯)

链接:http://poj.org/problem?id=1664

题目描述:
把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法。

输入描述:
第一行是测试数据的数目t(0 <= t <= 20)。以下每行均包含二个整数M和N,以空格分开。1<=M,N<=10。

输出描述:
对输入的每组数据M和N,用一行输出相应的K。

输入样例:

1
7 3

输出样例:

8

思路:
用f(m,n)表示m个苹果放n个盘子有多少种方法
m < n时,至少有n-m个盘子空着,去掉这n-m个盘子对方法数不会产生影响,即f(m,n) = f(m,m)
m > n时,分两种情况:
第一种 所有盘子里都有苹果,从每个盘子里拿走一个苹果方法数不会产生影响,即f(m,n) = f(m-n,n)
第二种 至少有一个盘子里没放苹果,即f(m,n) = f(m,n-1)
所以 m > n时,f(m,n) = f(m-n,n)+f(m,n-1)
对f(m,n)递归边界分析
n = 1时,所有苹果只能放一个盘子里,所以f(m,1)返回 1
m = 0时,没有苹果可以放,定义为1种放法,所以f(0,n)返回 1
代码:

#include<stdio.h>
int f(int m,int n)//m个苹果放n个盘子有多少种方法  
{
	if(n == 1||m == 0) return 1;
	if(m <  n) return f(m,m);
	if(m >= n) return f(m-n,n)+f(m,n-1);
}
int main()
{
	int t;
	scanf("%d",&t);
	while(t--)
	{
		int m,n;
		scanf("%d%d",&m,&n);
		printf("%d\n",f(m,n));
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

温柔说给风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值