LeetCode 997. Find the Town Judge (Easy)

Description:
In a town, there are N people labelled from 1 to N. There is a rumor that one of these people is secretly the town judge.

If the town judge exists, then:

1.The town judge trusts nobody.
2.Everybody (except for the town judge) trusts the town judge.
3.There is exactly one person that satisfies properties 1 and 2.

You are given trust, an array of pairs trust[i] = [a, b] representing that the person labelled a trusts the person labelled b.

If the town judge exists and can be identified, return the label of the town judge. Otherwise, return -1.

Example 1:

Input: N = 2, trust = [[1,2]]
Output: 2

Example 2:

Input: N = 3, trust = [[1,3],[2,3]]
Output: 3

Example 3:

Input: N = 3, trust = [[1,3],[2,3],[3,1]]
Output: -1
Example 4:

Example 4:

Input: N = 3, trust = [[1,2],[2,3]]
Output: -1
Example 5:

Example 5:

Input: N = 4, trust = [[1,3],[1,4],[2,3],[2,4],[4,3]]
Output: 3

Note:

1.1 <= N <= 1000
2,trust.length <= 10000
3.trust[i] are all different
4.trust[i][0] != trust[i][1]
5.1 <= trust[i][0], trust[i][1] <= N

Analysis:
The problem is interesting. My first thought was to use DSU, DSU is used to connect two different parts of a graph which don’t share a common root node into one part. However, trust[i] = [a, b] only represents that node a trusts node b, it doesn’t mean node a trust node b 's ancestor nodes. Though by using DSU we may find a common root node, but it does’t seem to work.

Actually, what we need to do is to find a unique node whose in-degree is N-1 and out-degree is 0.


Code:

class Solution {
   public int findJudge(int N, int[][] trust) {
       int[] inDegree = new int[N+1];
       int[] outDegree = new int[N+1];
       
       for(int[] oneTrust: trust){
           inDegree[oneTrust[1]]++;
           outDegree[oneTrust[0]]++;
       }
       
       int judgeAmount = 0;
       int judgeNumber = 0;
       
       for(int i = 1; i < inDegree.length; i++) {
           if(inDegree[i] == N-1 && outDegree[i] == 0) {
               judgeAmount++;
               judgeNumber = i;
           }
       }
       
       if(judgeAmount == 1) {
           return judgeNumber;
       }else{
           return -1;
       }
   }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值