3.Random Variable__随机变量(2)常见连续随机变量及其分布

2.2 常见连续随机变量及其分布

2.2.1 连续均匀分布

f ( x ) = { 1 / ( b − 1 ) , x ∈ [ a , b ] 0 , otherwise ⇔ X ∼ U n i f o r m ( a , b ) ⇔ X ∼ U ( a , b )   w h e r e   a < b f(x)=\begin{cases} 1/(b-1), & x\in [a,b]\\0,&\text{otherwise}\end{cases} \Leftrightarrow X\sim Uniform(a,b) \Leftrightarrow X\sim U(a,b) \ where\ a<b f(x)={1/(b1),0,x[a,b]otherwiseXUniform(a,b)XU(a,b) where a<b

2.2.2 伽马分布

f ( x ) = 1 β α Γ ( α ) x α − 1 e x p ( − x β ) , w h e r e   α , β > 0 ⇔ X ∼ G a m m a ( α , β ) ⇔ X ∼ G a ( α , β ) f(x) = \frac{1}{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha-1} exp\left( -\frac{x}{\beta}\right), where\ \alpha, \beta >0 \Leftrightarrow X\sim Gamma (\alpha,\beta) \Leftrightarrow X\sim Ga(\alpha, \beta) f(x)=βα1Γ(α)xα1exp(βx),where α,β>0XGamma(α,β)XGa(α,β)
其中伽马函数为 Γ ( α ) = ∫ 0 + ∞ x α − 1 e x p ( − x ) d x \Gamma(\alpha)=\int_0^{+\infty} x^{\alpha-1} exp(-x) dx Γ(α)=0+xα1exp(x)dx;伽马函数的性质有: Γ ( α + 1 ) = α Γ ( α ) \Gamma(\alpha+1) = \alpha \Gamma(\alpha) Γ(α+1)=αΓ(α) Γ ( 1 ) = Γ ( 0 ) = 0 \Gamma(1)=\Gamma(0)=0 Γ(1)=Γ(0)=0 Γ ( 1 / 2 ) = π \Gamma(1/2)=\sqrt{\pi} Γ(1/2)=π Γ ( α + 1 ) = α ! \Gamma(\alpha+1)=\alpha! Γ(α+1)=α!等。

另一种写法:
f ( x ) = β α Γ ( α ) x α − 1 e x p ( − β x ) , w h e r e   α , β > 0 ⇔ X ∼ G a m m a ( α , β ) ⇔ X ∼ G a ( α , β ) f(x)=\frac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha-1} exp(-\beta x),where\ \alpha, \beta >0 \Leftrightarrow X\sim Gamma(\alpha, \beta) \Leftrightarrow X\sim Ga(\alpha,\beta) f(x)=Γ(α)βαxα1exp(βx),where α,β>0XGamma(α,β)XGa(α,β)
其中 α \alpha α主要影响分布的峰起状态,称作形状参数; β \beta β主要影响分布的散度状态,称作尺度参数;如果 X i ∼ G a ( α i , β i ) X_i\sim Ga(\alpha_i, \beta_i) XiGa(αi,βi)且相互独立,则 ∑ i = 1 n X i ∼ G a ( Σ i = 1 n α i , β ) \sum_{i=1}^n X_i \sim Ga(\Sigma_{i=1}^n \alpha_i,\beta) i=1nXiGa(Σi=1nαi,β)

2.2.3 指数分布

f ( x ) = { 1 β e x p ( − x β ) , x > 0 0 , otherwise ⇔ X ∼ E x p ( β ) ⇔ E ( β ) f(x)=\begin{cases}\frac{1}{\beta} exp \left(-\frac{x}{\beta}\right),&x>0\\0,&\text{otherwise}\end{cases} \Leftrightarrow X\sim Exp(\beta)\Leftrightarrow E(\beta) f(x)={β1exp(βx),0,x>0otherwiseXExp(β)E(β)
常用语描述“电子元器件寿命”与“两次罕见事件的间隔时间”

2.2.4 卡方分布

令伽马分布中 α = p / 2 ,   β = 2 \alpha = p/2,\ \beta=2 α=p/2, β=2其中 p p p为正整数,会获得卡方分布
f ( x ) = 1 Γ ( p 2 ) 2 p 2 x p 2 − 1 exp ⁡ ( − x 2 ) , 0 < x < ∞ ⇔ X ∼ χ 2 ( p ) f(x)=\frac{1}{\Gamma\left(\frac{p}{2}\right) 2^{\frac{p}{2}}} x^{\frac{p}{2}-1} \exp \left(-\frac{x}{2}\right), 0<x<\infty \Leftrightarrow X \sim \chi^{2}(p) f(x)=Γ(2p)22p1x2p1exp(2x),0<x<Xχ2(p)

2.2.5 正态(高斯)分布

f ( x ) = 1 2 π σ e x p [ − ( x − μ ) 2 2 σ 2 ] ⇔ X ∼ N ( μ , σ 2 ) f(x)=\frac{1}{\sqrt{2\pi}\sigma} exp\left[ -\frac{\left( x-\mu\right)^2}{2\sigma^2} \right]\Leftrightarrow X\sim \mathcal{N}\left( \mu,\sigma^2\right) f(x)=2π σ1exp[2σ2(xμ)2]XN(μ,σ2)
如果 μ = 0 \mu=0 μ=0 σ 2 = 1 \sigma^2=1 σ2=1,则 f ( x ) = 1 2 π e x p ( − x 2 2 ) ⇒ N ( 0 , 1 ) f(x)=\frac{1}{\sqrt{2\pi}} exp\left(-\frac{x^2}{2}\right)\Rightarrow \mathcal{N}(0,1) f(x)=2π 1exp(2x2)N(0,1)

2.2.6 指数幂分布

f ( x ) = 1 2 q + 1 q Γ ( q + 1 q ) σ e x p [ − ( x − μ ) 2 2 σ 2 ] f(x)=\frac{1}{2^{\frac{q+1}{q}} \Gamma\left(\frac{q+1}{q}\right) \sigma} exp\left[ -\frac{\left(x-\mu\right)^2}{2\sigma^2} \right] f(x)=2qq+1Γ(qq+1)σ1exp[2σ2(xμ)2]
q = 2 q=2 q=2可得高斯分布

2.2.7 拉普拉斯分布

在指数幂分布中令 q = 1 q=1 q=1可得拉普拉斯分布:
f ( x ) = 1 4 σ e x p [ ∣ x − μ ∣ 2 σ ] f(x)=\frac{1}{4\sigma} exp\left[ \frac{|x-\mu|}{2\sigma}\right] f(x)=4σ1exp[2σxμ]

2.2.8 广义逆高斯分布

f ( x ) = ( α β ) p 2 2 K p ( α β ) x p − 1 e x p [ − 1 2 ( α x + β x ) ] , x ≥ 0 f(x)=\frac{\left(\frac{\alpha}{\beta}\right)^{\frac{p}{2}}}{2K_p\left(\sqrt{\alpha \beta}\right)}x^{p-1} exp\left[ -\frac{1}{2} \left(\alpha x + \frac{\beta}{x}\right) \right],\quad x\geq 0 f(x)=2Kp(αβ )(βα)2pxp1exp[21(αx+xβ)],x0
其中 K p K_p Kp表示二阶修正的贝塞尔函数

2.2.9 逆伽马分布

f ( x ) = β α Γ ( α ) x − ( α + 1 ) ( 1 − x ) β − 1 , x ≥ 0 ⇔ X ∼ I G ( α , β ) f(x)=\frac{\beta^\alpha}{\Gamma(\alpha)} x^{-(\alpha+1)} (1-x)^{\beta-1},\quad x\geq 0\Leftrightarrow X\sim IG(\alpha,\beta) f(x)=Γ(α)βαx(α+1)(1x)β1,x0XIG(α,β)

2.2.10 贝塔分布

f ( x ) = Γ ( α + β ) Γ ( α ) Γ ( β ) x α − 1 ( 1 − x ) β − 1 ,   0 < x < 1 f(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1},\ 0<x<1 f(x)=Γ(α)Γ(β)Γ(α+β)xα1(1x)β1, 0<x<1
其中,贝塔函数为 B e ( α , β ) = ∫ 0 1 x α − 1 ( 1 − x ) β − 1 d x Be(\alpha,\beta)=\int_0^1 x^{\alpha-1}(1-x)^{\beta-1} dx Be(α,β)=01xα1(1x)β1dx

2.2.11 T分布

f ( x ) = Γ ( α + 1 2 ) Γ ( α 2 ) ( 1 + x 2 α ) α + 1 2 ⇔ X ∼ t α f(x)=\frac{\Gamma\left( \frac{\alpha+1}{2}\right)}{\Gamma\left(\frac{\alpha}{2}\right)}\left( 1+\frac{x^2}{\alpha}\right)^{\frac{\alpha+1}{2}}\Leftrightarrow X\sim t_\alpha f(x)=Γ(2α)Γ(2α+1)(1+αx2)2α+1Xtα

2.2.12 初识共轭先验分布

例1

X ∼ B e r n o u l l i ( θ ) , 0 < θ < 1 , θ ∼ B e t a ( α , β ) X\sim Bernoulli(\theta),0<\theta<1,\theta\sim Beta(\alpha,\beta) XBernoulli(θ),0<θ<1,θBeta(α,β),则
p ( θ ∣ x ) ∼ p ( x ∣ θ ) p ( θ ∣ α , β ) = θ x ( 1 − θ ) 1 − x Γ ( α + β ) Γ ( α ) Γ ( β ) θ α − 1 ( 1 − θ ) β − 1 = ∣ G a m m a ( α + β ) Γ ( α ) Γ ( β ) θ α + x − 1 ( 1 − θ ) β − x ∼ B e t a ( α + x , b e t a − x + 1 ) \begin{align*} &p( \theta|x)\sim p(x|\theta) p(\theta|\alpha,\beta)\\=&\theta^x (1-\theta)^{1-x}\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\theta^{\alpha-1} (1-\theta)^{\beta-1}\\=&\frac{|Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\theta^{\alpha+x-1}(1-\theta)^{\beta-x}\\&\sim Beta(\alpha+x, beta-x+1) \end{align*} ==p(θx)p(xθ)p(θα,β)θx(1θ)1xΓ(α)Γ(β)Γ(α+β)θα1(1θ)β1Γ(α)Γ(β)Gamma(α+β)θα+x1(1θ)βxBeta(α+x,betax+1)
显然,后延分布 p ( θ ∣ x ) p(\theta|x) p(θx)与先验分布 p ( x ∣ t h e t a ) p(x|theta) p(xtheta)都是贝塔分布,是共轭的。

例2

X ∼ N ( 0 , σ 2 ) X\sim\mathcal{N}(0,\sigma^2) XN(0,σ2),令 λ = σ 2 \lambda=\sigma^2 λ=σ2,则 f X ( x ) = 1 2 π λ − 1 / 2 e x p ( x 2 2 λ ) f_X(x)=\frac{1}{\sqrt{2\pi}}\lambda^{-1/2} exp\left( \frac{x^2}{2\lambda}\right) fX(x)=2π 1λ1/2exp(2λx2);另设 λ ∼ G a ( λ ∣ γ , α 2 ) \lambda \sim Ga\left( \lambda | \gamma,\frac{\alpha}{2}\right) λGa(λγ,2α)
显然, λ ∼ λ γ − 1 e x p e x p ( − α λ 2 ) \lambda \sim \lambda^{\gamma-1} exp exp\left( -\frac{\alpha \lambda}{2}\right) λλγ1expexp(2αλ),则 p ( λ ∣ x ) ∝ p ( x ∣ λ ) p ( λ ∣ γ , α ) ∝ λ γ − 3 2 e x p [ − 1 2 ( x 2 λ + α λ ) ] p(\lambda|x)\propto p(x|\lambda)p(\lambda|\gamma,\alpha)\propto \lambda^{\gamma-\frac{3}{2}} exp\left[-\frac{1}{2}\left(\frac{x^2}{\lambda} + \alpha \lambda\right)\right] p(λx)p(xλ)p(λγ,α)λγ23exp[21(λx2+αλ)]属于广义逆高斯分布,未与先验分布(伽马分布)形成共轭,于是考虑更换先验分布条件为 λ ∼ I G ( τ , β 2 ) \lambda \sim IG\left(\tau,\frac{\beta}{2}\right) λIG(τ,2β),则有 p ( λ ∣ x ) ∝ p ( x ∣ λ ) p ( λ ∣ τ , β 2 ) ∝ λ − ( τ + 2 2 ) e x p ( − x 2 + β 2 λ ) ∼ I G ( τ + 1 2 , x 2 + β ) p(\lambda|x)\propto p(x|\lambda) p\left( \lambda|\tau,\frac{\beta}{2}\right) \propto \lambda^{-\left(\tau+\frac{2}{2}\right)} exp\left(-\frac{x^2+\beta}{2\lambda}\right)\sim IG\left( \tau+\frac{1}{2}, x^2+\beta\right) p(λx)p(xλ)p(λτ,2β)λ(τ+22)exp(2λx2+β)IG(τ+21,x2+β)与先验分布形成共轭。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Fanshaoliang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值