2.Random Variable__随机变量(1)

2.0 随机变量基础

定义 2.1

随机变量 X 是一个可测映射:X:\Omega \rightarrow \mathbb{R} ,该映射对每一个输出 \omega 赋予实数值 X(\omega) 


2.1 Distribution Function & Probability Density Function 分布函数与概率密度函数

定义 2.2 (累积)分布函数

(累积)分布函数:CDF,表示函数 F_{X}:\mathbb{R} \rightarrow [\ 0,1\ ] ,定义为: F_{X}(x)=P\{X\leq x\}.

定理 2.1 

X 的CDF为 F ,Y 的CDF为 G ,如果 F(x)=G(x)\ ,\ \forall x ,那么P\{X\in A\}=G\{X\in A\}\ ,\ \forall A.

定理 2.2

从实直线映射到 [\ 0,1\ ] 的函数 F 是某个概率 P 的CDF,当且仅当其满足如下条件:

(1)非单减,即:x_{1}<x_{2}\rightarrow F(x_{1}) \leq F(x_{2})

(2)规范,即:\lim_{x\rightarrow -\infty} F(x)=0\ ,\ \lim_{x\rightarrow + \infty}F(x)=1

(3)右连续,即:F(x^{+})=\lim_{y\rightarrow x^{+}}F(y)

定义 2.3 概率质量函数 pmf

如果 X 的取值为可数的值 \{X_1,X_2,\cdots \}  ,则 X 是离散的,定义 X 的概率函数或概率密度函数为:f_{X}(x)=P\{X \leq x\} ,因此有:X \in \mathbb{R}\ ,\ f_{X}(x)\geq 0\ , \Sigma_{i}f_{X}(x_{i})=1 ,有时用 f 代替书写。X 的CDF与pmf间关系为:

F_{X}(x)=P\{X\leq x\}=\Sigma_{x_{i}\leq x}f_{X}(x_{i})

定义 2.4 概率密度函数 pdf

如果存在某个函数 f_{X} 对所有 x 有:f_{X}(x)\geq 0\ ,\ \int_{-\infty}^{+\infty}f_{X}(t) dt=1 且 P\{a<X<b\}=\int_{a}^{b}f_{X}(t)dt\ ,\ \forall a\leq b ,则随机变量 X 是连续型随机变量,函数 f_{X}(x) 称为概率密度函数(pdf)且有:

F_{X}(x)=\int_{-\infty}^{x}f_{X}(t)dt 

以及 f_{X}(x)=\frac{d}{dx}F_{X}(x) 在 F_{X} 可微点处均成立。


 2.2 Common Discrete Distribution 常见离散分布

2.2.1 单点分布 

仅在一个点 a 上有概率密度,记为 X \thicksim \delta_{a} ,即 P(X=a)=1 ,那么 

F(x)=\begin{Bmatrix} 0,& x<a\\ 1,& x\geq a \end{matrix}

概率密度在 x=a 处 f(x)=1 ,其他情形下为 0 。

2.2.2 离散均匀分布 

令 k>1 为给定的整数,假设 X 具有如下概率密度函数:

f(x)=\begin{Bmatrix} &1/k,&\ \ x=1,2,\cdots,k,\\ &0,&\ \ otherwise \end{matrix}

则称 X 在 \{1,2,\cdots ,k\} 上服从均匀分布。

2.2.3 Bernoulli Dsitribution 伯努利分布

X \thicksim \begin{pmatrix} 1 & 0\\p&1-p\end{pmatrix} \Leftrightarrow \begin{Bmatrix}P\{X=1\}=p\ ,\ \\P\{X=0\}=1-p.\end{matrix} \\\\\Leftrightarrow X\thicksim Bernoulli(p) \Leftrightarrow f_{X}(x)=p^{x}(1-p)^{1-x}\ ,\ x\in\{0,1\}

2.2.4 Binomial Distribution 二项分布

f_{X}(x)= \begin{Bmatrix} \begin{pmatrix} n\\x\end{pmatrix}p^x(1-p)^{n-x}\ or\ C_{n}^{x}\ p^x(1-p)^{n-x}\ ,&\ x=0,1,2,\cdots,n,\\0,&otherwise\end{matrix} \\\\\\\Leftrightarrow X \thicksim Binomial(n,p)\ or\ B(n,p)\ ,\ \\\\and\ if\ X_1\thicksim B(n_1,p)\ ,\ X_2\thicksim B(n_2,p)\ ,\ then\ X_1+X_2 \thicksim B(n_1+n_2,p)

2.2.5 Geometric Dsitribution 几何分布

f_{X}(x)=P\{X=x\}=p(1-p)^{x-1}\ ,\ x=1,2,3,\cdots \Leftrightarrow X\thicksim Geom(p)\ or\ G(p)

“连续失败 x-1 次,第 x 次成功”

2.2.6 Poission Distribution 泊松分布

f_{X}(x)=\frac{\lambda^{x}}{x!}exp(-\lambda)\ ,\ x>0 \Leftrightarrow X\thicksim Poission(\lambda)\ or \ X\thicksim P(\lambda)\\\\ and\ if\ X_1\thicksim P(\lambda_{1})\ X_2\thicksim P(\lambda_2)\ ,\ then\ X_1+X_2 \thicksim P(\lambda_1+\lambda_2)

“描述罕见事件发生的次数”

【例2.1】泊松分布的二项式逼近:Binomial(n,p)\Rightarrow f_{X}(x)=C_{n}^{k}\ p^k(1-p)^{n-k} ,令 \lambda = np ,有 p=\frac{\lambda}{n} 。

当 n \rightarrow \infty 时,p \rightarrow 0 ,f_{X}(k)=C_{n}^{k}(\frac{\lambda}{n})^{k}(1-\frac{\lambda}{n})^{-k}(1-\frac{\lambda}{n})^{n} ,

其中 \lim_{n\rightarrow \infty}(1-\frac{\lambda}{n})^{n}=exp(-\lambda) ,

\Rightarrow \ f_{X}(k)= \frac{n(n-1)(n-2)\cdots(n-k+1)}{k!}\lambda^{k}(\frac{1}{n})^{k}(1-\frac{\lambda}{n})^{-k}exp(-\lambda) ,

其中 \lim_{n\rightarrow \infty}\frac{n(n-1)(n-2)\cdots (n-k+1)}{n^k}=1\ ,\ \lim_{n\rightarrow \infty}(1-\frac{\lambda}{n})^{-k}=1\\ ,

\Rightarrow f_{X}(k)=\frac{\lambda^k}{k!}exp(-\lambda) ,证毕。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Fanshaoliang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值