特殊关系

1.等价关系
1.1 等价关系定义
1.1.1 定义
设R是非空集合A上的关系,如果R是自反的,对称的,传递的,则称R为A上的等价关系。


1.1.2 同余关系
设n为正整数,定义整数集合Z上的以n为模的同余关系 R = { < x , y > ∣ n ∣ ( x − y ) } R=\{<x,y>|n|(x-y)\} R={<x,y>∣n∣(x−y)},证明R是一个等价关系。


1.2 等价类
1.2.1 等价类的定义
定义:设R是非空集合A上的等价关系,对任意 x ∈ A x\in A x∈A,称集合 [ x ] R = { y ∣ y ∈ A , < x , y > ∈ R } [x]_R=\{y|y\in A,<x,y>\in R\} [x]R={y∣y∈A,<x,y>∈R}为 x x x关于R的等价类,或者叫做由x生成的一个R等价类,其中 x x x称为 [ x ] R [x]_R [x]R的生成元(代表元或者典型元)。

1.2.2 等价类的性质
- 等价类是非空的
- 有些等价类是相同的,有些是不同的
- 所有等价类中的元素汇总为集合的所有元素
定理:
设R是非空集合A上的等价类,则:
- 对任意 x ∈ A x\in A x∈A,KaTeX parse error: Undefined control sequence: \O at position 11: [x]_R\neq \̲O̲
- 对任意 x , y ∈ A x,y\in A x,y∈A,如果 y ∈ [ x ] R y\in [x]_R y∈[x]R,则有 [ x ] R = [ y ] R [x]_R=[y]_R [x]R=[y]R,否则KaTeX parse error: Undefined control sequence: \O at position 17: …x]_R\cap [y]_R=\̲O̲
- ∪ x ∈ A [ x ] R = A \cup_{x\in A}[x]_R=A ∪x∈A[x]R=A


1.3 商集
1.3.1 定义
定义:设R是非空集合A上的等价关系,由R确定的一切等价类的集合,称为集合A上的商集,记为A/R,即 A / R = { [ x ] R ∣ x ∈ A } A/R=\{[x]_R|x\in A\} A/R={[x]R∣x∈A}.

1.3.2 等价类的求法

2. 集合的划分
在等价关系中我们已经发现,同一个等价类中的元素具有相同的属性,因而可将集合中的元素分成不同的类别,对应于集合的划分。
2.1 集合的划分的定义

定理:
设R是非空集合A上的一个等价关系,则A对R的商集A/R是A的一个划分,称为由R导出的等价划分。

同一个集合有多种不同的划分,不同的等价关系导出不同的划分。
2.2 等价关系导出
给定集合A的一个划分 π = { S 1 , S 2 , . . . , S m } \pi = \{S_1,S_2,...,S_m\} π={S1,S2,...,Sm},则由该划分确定的关系 R = ( S 1 × S 2 ) ∪ ( S 2 × S 2 ) ∪ … … ∪ ( S m × S m ) R=(S_1\times S_2)\cup(S_2\times S_2)\cup……\cup(S_m\times S_m) R=(S1×S2)∪(S2×S2)∪……∪(Sm×Sm)是A上的等价关系。我们称该等价关系为由划分 π \pi π所导出的等价关系。




3. 偏序关系
3.1 偏序关系的定义
定义:设R是非空集合A上的关系,如果R是自反的、反对称的、传递的,则称R为A上的偏序关系(partial order relation), 记为" ≤ \leq ≤",读作“小于等于”,并将“ < a , b > ∈ ≤ < a, b>\in \leq <a,b>∈≤"记为a≤b。序偶 < A , ≤ > < A,\leq> <A,≤>称为偏序集(partial order set)。



3.2 可比与覆盖
定义:
设R是非空集合 A A A上的偏序关系, ∀ x , y ∈ A \forall x,y\in A ∀x,y∈A,
- 如果 x ≤ y x\leq y x≤y或者 y ≤ x y\leq x y≤x,则称x与y可比
- 如果 x ≤ y x\leq y x≤y且不存在 z ∈ A z\in A z∈A使得 x ≤ z ≤ y x\leq z\leq y x≤z≤y,则称** y y y覆盖 x x x**

3.3 字典排序

3.4 哈斯图
在偏序集的关系图中,许多有向边可以不用显示出来。例如,偏序关系满足自反性,所以每个结点都有环,因此可以不必显示这些环;又如,偏序关系满足传递性,我们不必显示由于传递性而必须出现的边;另外,由于其反对称的特性,我们可以规定边的方向,从而省去箭头。按照以上方法对关系图进行简化而得到的图形叫做哈斯图,哈斯图对于判断元素之间的先后顺序以及确定特殊元素非常方便。
3.4.1 定义
设R是非空集合A上的偏序关系,使用下面的方法对R的关系图进行简化:
- 取消每个结点的自环(因自反性)
- 取消由于传递性出现的边,即若 x → y , y → z x\rightarrow y,y\rightarrow z x→y,y→z,则去掉 x → z x\rightarrow z x→z这条边(因传递性)
- 重新排列每条边,使得箭头的方向全部向上,然后去掉这些箭头(因反对称性)
以上的步骤可以得到一个包含足够偏序信息的图,这个图称为偏序关系R的哈斯图(Hasse diagram)。

3.4.2 特殊元素
3.4.2.1 最大元和最小元
定义:
设 < A , ≤ > <A,\leq> <A,≤>是偏序集,*B是A的任意一个子集*。若存在元素 b ∈ B b\in B b∈B,使得——最大元和最小元是在集合B中寻找的
- 对任意 x ∈ B x\in B x∈B,都有 x ≤ b x\leq b x≤b,则称b为B的最大元
- 对任意 x ∈ B x\in B x∈B,都有 b ≤ x b\leq x b≤x,则称b为B的最小元

3.4.2.2 极大元和极小元
定义:
设 < A , ≤ > <A,\leq> <A,≤>是偏序集,B是A的任意一个子集</u>。若存在元素 b ∈ B b\in B b∈B,使得——极大元和极小元也是在集合B中寻找的
- 对任意 x ∈ B x\in B x∈B,都有 b ≤ x ⇒ x = b b\leq x\Rightarrow x=b b≤x⇒x=b,则称b为B的极大元
- 对任意 x ∈ B x\in B x∈B,都有 x ≤ b ⇒ x = b x\leq b\Rightarrow x=b x≤b⇒x=b,则称b为B的极小元


4.3.2.3 上界和上确界
定义:设 < A , ≤ > <A, \leq> <A,≤>是偏序集,B是A的任意一个子集,若存在元素 a ∈ A a\in A a∈A,使得:——上界和上确界都是在整个集合中寻找的
- 对任意 x ∈ B x\in B x∈B,满足 x ≤ a x\leq a x≤a,则称a为B的上界
- 若元素 a ′ ∈ A a'\in A a′∈A是B的上界,元素 a ∈ A a\in A a∈A是B的任何一个上界,均有 a ′ ≤ a a'\leq a a′≤a,则称 a ′ a' a′为B的最小上界或上确界

4.3.2.4 下界和下确界
定义:设 < A , ≤ > <A, \leq> <A,≤>是偏序集,B是A的任意一个子集,若存在元素 a ∈ A a\in A a∈A,使得:——下界和下确界都是在整个集合中寻找的
- 对任意 x ∈ B x\in B x∈B,满足 a ≤ x a\leq x a≤x,则称a为B的下界
- 若元素 a ′ ∈ A a'\in A a′∈A是B的上界,元素 a ∈ A a\in A a∈A是B的任何一个下界,均有 a ≤ a ′ a\leq a' a≤a′,则称 a ′ a' a′为B的最小下界或下确界

4. 其他次序关系
4.1 拟序关系
设R是非空集合A上的关系,如果R是反自反的和传递的,则称R为A上的拟序关系(quasi-order relation),记为“< “,读作"小于”,并将“ < a , b > <a,b> <a,b>∈<”记为 a < b a< b a<b。序偶 < A , < > < A,< > <A,<>称为拟序集(quasi-order set)。

如果满足反自反和传递性,那么一定满足反对称性,证明如下:

拟序关系 VS 偏序关系:
- R是A上的偏序关系,则 R − I A R-I_A R−IA是 A A A上的拟序关系
- S是A上的拟序关系,则 S ∪ I A S\cup I_A S∪IA是A上的偏序关系
4.2 全序关系
定义:设 < A , ≤ > <A,\leq> <A,≤>是一个偏序关系,若对任意的 x , y ∈ A x,y\in A x,y∈A, x x x与 y y y都是可比的,则称关系$\leq 为 ∗ ∗ 全序关系 ∗ ∗ 或者线序关系。称 为**全序关系**或者线序关系。称 为∗∗全序关系∗∗或者线序关系。称<A,\leq>$为全序集,或线序集,或链。


4.3 良序关系
定义:设 < A , ≤ > <A,\leq> <A,≤>是全序集,若 A A A的任何一个非空子集都有最小元素,则称“ ≤ \leq ≤”为良序关系,此时 < A , ≤ > <A,\leq> <A,≤>称为良序集。

4.4 总结
