目录
1.等价关系--商集--等价划分
(1)由等价关系所产生的一个类别就是等价类:
(2)设 R是非空集合 A 上的等价关系,由 R确定的一切等价类的集合,称为集合 A 上关于R 的商集,记为A/R。
所以同一个集合中,关系不同,商集就不同。
(3)A对R的商集就是A的一个划分:
等价关系不同,商集就不同,商集不同,导出的等价划分就不同。所以一种等价关系就对应一种集合划分。
根据划分的不同也可以导出等价关系:
可以简单理解,每个划分都是没有交集的。每个划分的笛卡尔积{a,b}*{a,b}可以生成这个划分的全关系,每个划分的全关系合起来就可以得到等价关系。
由上面的推导1个商集对应1个划分方式。
第一种划分方法:3个元素在同一组,那么商集={{1,2,3}},等价关系就是{1,2,3}*{1,2,3};
第二种划分方式:2个元素1组,另1个元素单独作为1组,那么商集=
{{1,2},{3}},{{1,3},{2}},{{2,3},{1}},等价关系就是({1,2}*{1,2}) U ({3}*{3}),......
第三种是每个元素单独为1组,那么商集={{1},{2},{3}},那么等价关系:
({1}*{1}) U ({2}*{2}) U ({3}*{3})
例1:
例2:
这里的|s|和|t|表示集合s,t的基数,也就是集合s,t中元素的个数。
2.集合划分的证明
构成集合划分需要两个条件:
(1)任意两个不同子集的交集为空集
(2)所有子集的并集等于原集合
下面的例题(1)证明了交集必为空,(2)证明了子集的并集为原集
例1:
例2:
|A|>1,设|A|=n,A的幂集P(A)的元素个数是2^n个:
。集合划分要求不同子集之间交集为空,但在(P(A)-
)中,除了A本身,其他非空真子集Ai与A的交集≠