离散数学----等价关系与集合的划分

目录

1.等价关系--商集--等价划分

2.集合划分的证明


1.等价关系--商集--等价划分

(1)由等价关系所产生的一个类别就是等价类

(2)设 R是非空集合 A 上的等价关系,由 R确定的一切等价类的集合,称为集合 A 上关于R 的商集,记为A/R。

所以同一个集合中,关系不同,商集就不同

(3)A对R的商集就是A的一个划分:

等价关系不同,商集就不同,商集不同,导出的等价划分就不同。所以一种等价关系就对应一种集合划分。

根据划分的不同也可以导出等价关系:

可以简单理解,每个划分都是没有交集的。每个划分的笛卡尔积{a,b}*{a,b}可以生成这个划分的全关系,每个划分的全关系合起来就可以得到等价关系。

由上面的推导1个商集对应1个划分方式。

第一种划分方法:3个元素在同一组,那么商集={{1,2,3}},等价关系就是{1,2,3}*{1,2,3};

第二种划分方式:2个元素1组,另1个元素单独作为1组,那么商集=

{{1,2},{3}},{{1,3},{2}},{{2,3},{1}},等价关系就是({1,2}*{1,2}) U ({3}*{3}),......

第三种是每个元素单独为1组,那么商集={{1},{2},{3}},那么等价关系:

({1}*{1}) U ({2}*{2}) U ({3}*{3})

例1:

例2:

这里的|s|和|t|表示集合s,t的基数,也就是集合s,t中元素的个数。

2.集合划分的证明

构成集合划分需要两个条件:

(1)任意两个不同子集的交集为空集

(2)所有子集的并集等于原集合

下面的例题(1)证明了交集必为空,(2)证明了子集的并集为原集

例1:

例2:

|A|>1,设|A|=n,A的幂集P(A)的元素个数是2^n个:集合划分要求不同子集之间交集为空,但在(P(A)-\varnothing)中,除了A本身,其他非空真子集Ai与A的交集≠\varnothing

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值