第十二章:气体动理论
一级目录
二级目录
三级目录
一、分子运动的基本概念
1.气体的状态参量
(1)压强P
①概念:
单位时间内大量气体分子对容器壁单位面积的垂直作用力(平均冲量)
②单位
帕斯卡(N· m − 2 m^{-2} m−2)
(2)体积V
气体活动的空间
(3)温度T
气体冷热程度的量度
分子热运动剧烈强度的量度
T
=
(
t
+
273
)
K
T=(t+273)K
T=(t+273)K
2.平衡态和平衡过程
(1)平衡态
概念:一个系统,宏观量不随时间变化的状态称为平衡态
特点:热动平衡
宏观量:T,P稳定
微观量:分子热运动永不停息
(2)平衡过程
系统与外界有能量交换,任何一个实际的过程都是状态改变过程,都是非平衡的。
过程进行得非常缓慢并不计摩擦,此过程称为准静态过程,也称为平衡过程
总结:平衡过程是实际过程的近似处理,是理想化过程,优越性在于p-v图上明确地描写状态及其过程。
注意:p-v图上的任何一个点都对应着气体的一个平衡态
一
个
点
:
一
个
平
衡
态
一
条
曲
线
:
一
个
平
衡
过
程
一个点:一个平衡态\\ 一条曲线:一个平衡过程\\
一个点:一个平衡态一条曲线:一个平衡过程
3.理想气体的状态方程
(1)理想气体满足三个实验定律
由三个定律总结出来气体的状态方程(克拉帕龙方程)
P
V
=
m
M
m
o
l
R
T
其
中
:
R
=
8.31
J
/
m
o
l
⋅
K
:
摩
尔
气
体
常
数
1
m
o
l
气
体
上
升
1
摄
氏
度
吸
收
的
热
PV=\frac{m}{M_{mol}}RT\\ 其中:R=8.31J/mol·K:摩尔气体常数\\1mol气体上升1摄氏度吸收的热\\
PV=MmolmRT其中:R=8.31J/mol⋅K:摩尔气体常数1mol气体上升1摄氏度吸收的热
克拉帕龙方程的另一种形式:
P
=
n
k
T
k
=
R
N
0
=
1.38
×
1
0
−
23
—
—
波
兹
曼
常
数
其
中
N
0
=
6.02
×
1
0
23
,
n
=
N
V
P=nkT\\ k=\frac{R}{N_0}=1.38\times10^{-23}——波兹曼常数\\ 其中N_0=6.02\times10^{23},n=\frac{N}{V}\\
P=nkTk=N0R=1.38×10−23——波兹曼常数其中N0=6.02×1023,n=VN
二、气体分子热运动
1.气体热运动的特征
永恒的运动,频繁的碰撞
(1)运动:气体分子间距大,分子间作用力小,二次碰撞之间的运动可以看做惯性支配下的运动——匀速直线运动
(2)碰撞:扩散很慢——频繁碰撞的结果
(3)对于单个分子
碰
撞
时
:
偶
然
性
,
无
序
性
,
遵
守
能
量
守
恒
和
动
量
守
恒
—
—
力
学
规
律
碰
撞
后
:
匀
速
直
线
运
动
碰撞时:偶然性,无序性,遵守能量守恒和动量守恒——力学规律\\ 碰撞后:匀速直线运动
碰撞时:偶然性,无序性,遵守能量守恒和动量守恒——力学规律碰撞后:匀速直线运动
(4)对整体
在
整
体
上
遵
循
确
定
的
统
计
规
律
在整体上遵循确定的统计规律
在整体上遵循确定的统计规律
2.统计规律的特征
大量偶然事件组成整体,少量事件不服从统计规律
(1)统计平均值
计算方法同算数平均值相同,如年龄M:
M
ˉ
=
∑
每
个
年
龄
×
对
应
年
龄
的
人
数
总
人
数
\bar M=\frac{\sum每个年龄\times对应年龄的人数}{总人数}
Mˉ=总人数∑每个年龄×对应年龄的人数
统计平均值:分子速度:
v
ˉ
x
=
v
x
1
Δ
N
1
+
v
x
2
Δ
N
2
+
.
.
.
N
=
∫
v
x
d
N
N
v
ˉ
y
=
v
y
1
Δ
N
1
+
v
y
2
Δ
N
2
+
.
.
.
N
=
∫
v
y
d
N
N
v
ˉ
x
2
=
v
x
1
2
Δ
N
1
+
v
x
2
2
Δ
N
2
+
.
.
.
N
=
∫
v
x
2
d
N
N
\bar v_x=\frac{v_{x_1}\Delta N_1+v_{x_2}\Delta N_2+...}{N}=\frac{\int v_x dN}{N}\\ \bar v_y=\frac{v_{y_1}\Delta N_1+v_{y_2}\Delta N_2+...}{N}=\frac{\int v_y dN}{N}\\ \bar v_x^2=\frac{v_{x_1}^2\Delta N_1+v_{x_2^2}\Delta N_2+...}{N}=\frac{\int v_x^2 dN}{N}\\
vˉx=Nvx1ΔN1+vx2ΔN2+...=N∫vxdNvˉy=Nvy1ΔN1+vy2ΔN2+...=N∫vydNvˉx2=Nvx12ΔN1+vx22ΔN2+...=N∫vx2dN
(3)概率
在一定条件下,每个状态出现的次数
N
A
N_A
NA和测量总次数
N
N
N(即所有状态出现的次数的总和)的比值是一个确定值,称为A状态出现的概率
W
A
W_A
WA
W
A
=
lim
N
→
∞
N
A
N
对
一
个
系
统
:
{
所
有
状
态
出
现
的
总
次
数
N
A
状
态
出
现
的
次
数
N
A
A
状
态
出
现
的
概
率
W
A
W_A=\lim\limits_{N\rightarrow\infty}\frac{N_A}{N}\\ 对一个系统:\begin{cases} 所有状态出现的总次数N\\ A状态出现的次数N_A\\ A状态出现的概率W_A\\ \end{cases}
WA=N→∞limNNA对一个系统:⎩⎪⎨⎪⎧所有状态出现的总次数NA状态出现的次数NAA状态出现的概率WA
(4)归一化概念
所有可能出现的状态之和为1
∑
W
A
=
∑
N
i
N
=
1
\sum W_A=\frac{\sum N_i}{N}=1\\
∑WA=N∑Ni=1
三、理想气体的压强公式
1.理想气体的模型
(1)宏观模型
遵循三个实验规律
(2)微观模型
弹性小球碰撞模型
(3)统计假设
实验事实:平衡态时,容器中的气体分子数密度n均匀分布
假设:做热运动的分子向各个方向的运动机会相等,任何一个方向不必其他方向更占优势
所以:分子速度在各个方向分量的各种平均值相等
v
ˉ
x
=
v
ˉ
y
=
v
ˉ
z
=
0
v
ˉ
x
2
=
v
ˉ
y
2
=
v
ˉ
z
2
又
因
为
v
ˉ
2
=
v
ˉ
x
2
+
v
ˉ
y
2
+
v
ˉ
z
2
所
以
v
ˉ
x
2
=
v
ˉ
x
2
=
v
ˉ
x
2
=
1
3
v
ˉ
2
\bar v_x=\bar v_y=\bar v_z=0\\ \bar v_x^2=\bar v_y^2=\bar v_z^2\\ 又因为\bar v^2=\bar v_x^2+\bar v_y^2+\bar v_z^2\\ 所以\bar v_x^2=\bar v_x^2=\bar v_x^2=\frac{1}{3}\bar v^2
vˉx=vˉy=vˉz=0vˉx2=vˉy2=vˉz2又因为vˉ2=vˉx2+vˉy2+vˉz2所以vˉx2=vˉx2=vˉx2=31vˉ2
n:分子数密度
n
=
N
V
n=\frac{N}{V}
n=VN
(4)压强公式
p = 1 3 n μ v ˉ 2 p=\frac{1}{3}n\mu\bar v^2 p=31nμvˉ2
设一个分子的平均动能:
ε
ˉ
=
1
2
μ
v
ˉ
2
\bar \varepsilon=\frac{1}{2}\mu \bar v^2
εˉ=21μvˉ2
那么
p
=
2
3
n
ε
ˉ
p=\frac{2}{3}n\bar\varepsilon
p=32nεˉ
(5)理想气体温度公式
{ p = n k T p = 2 3 n ε ˉ ⇒ ε ˉ = 3 2 k T — — 温 度 公 式 \begin{cases} p=nkT\\ p=\frac{2}{3}n\bar\varepsilon \end{cases}\Rightarrow \bar\varepsilon=\frac{3}{2}kT——温度公式 {p=nkTp=32nεˉ⇒εˉ=23kT——温度公式
注意:
- 温度公式只对大量分子有意义,对单个少量分子无意义
- 分子平均动能只与分子的温度有关,而与分子的种类无关,T相同那么分子动能相同
- 均方根速率
v ˉ 2 = 3 R T M \sqrt{\bar v^2}=\sqrt{\frac{3RT}{M}} vˉ2=M3RT
四、麦克斯韦速率分布定律
- 单个分子:速度偶然
- 少量分子:速度分布没有规律
- 大量分子:速度分布有规律
1.速率分布
分子总数N,分子速率可能取值 0 → ∞ 0\rightarrow\infty 0→∞
将速率分成许多相等的小区间 Δ v \Delta v Δv——速率区间
每个速率区间内的分子数: Δ N \Delta N ΔN
- 每个速率区间内的分子数占总分子数的百分比是不同的
- 平衡态时, Δ v \Delta v Δv内的分子数 Δ N \Delta N ΔN占总分子数N的百分比 Δ N N \frac{\Delta{N}}{N} NΔN随速度变化的规律称为速度分布规律
- 此规律在无外场时称为麦克斯韦速率分布规律
2.麦氏速度分布律
麦氏速率分布律:
无外场,理想气体平衡态时,各单位速率区间内的分子数占总分子数的百分数按速率 v 分布的规律
N
:
分
子
总
数
d
v
:
速
率
区
间
d
N
:
在
速
率
区
间
v
到
v
+
d
v
内
的
分
子
数
(
不
能
说
是
d
v
内
的
)
d
N
N
:
在
速
率
区
间
v
到
v
+
d
v
内
的
分
子
数
占
总
分
子
数
的
百
分
比
N:分子总数\\ dv:速率区间\\ dN:在速率区间v到v+dv内的分子数(不能说是dv内的)\\ \frac{dN}{N}:在速率区间v到v+dv内的分子数占总分子数的百分比
N:分子总数dv:速率区间dN:在速率区间v到v+dv内的分子数(不能说是dv内的)NdN:在速率区间v到v+dv内的分子数占总分子数的百分比
(1)麦氏分布速率函数表达式
-
d N N \frac{dN}{N} NdN和什么有关?
- dv
- v
-
写成等式:
d N N = f ( v ) ⋅ d v \frac{dN}{N}=f(v)·dv NdN=f(v)⋅dv -
f ( v ) f(v) f(v)的物理意义
f ( v ) = d N d v 1 N f(v)=\frac{dN}{dv}\frac{1}{N}\\ f(v)=dvdNN1
表示在速率为v处单位速率区间内的分子数占总分子数的百分比 -
其他的一些变形的表示意义
1. { f ( v ) d v = d N N : 在 v 到 v + d v 内 的 分 子 数 占 总 分 子 数 的 百 分 比 N f ( v ) d v = d N : 在 v 到 v + d v 区 间 内 的 分 子 数 2. { 在 给 定 速 率 区 间 v 1 到 v 2 内 的 分 子 百 分 比 是 多 少 ? Δ N N = ∫ v 1 v 2 f ( v ) d v v 1 到 v 2 内 的 分 子 数 : Δ N = N ∫ v 1 v 2 f ( v ) d v 3. 在 整 个 速 率 区 间 ( 0 , + ∞ ) 内 分 子 的 百 分 数 是 多 少 ? ∑ i Δ N i N = ∫ 0 ∞ f ( v ) d v = 1 1.\begin{cases} f(v)dv=\frac{dN}{N}:在v到v+dv内的分子数占总分子数的百分比\\ Nf(v)dv={dN}:在v到v+dv区间内的分子数\\ \end{cases}\\ 2.\begin{cases} 在给定速率区间v_1到v_2内的分子百分比是多少?\frac{\Delta N}{N}=\int_{v_1}^{v_2}f(v)dv\\ v_1到v_2内的分子数:\Delta N=N\int_{v_1}^{v_2}f(v)dv\\ \end{cases}\\ 3.在整个速率区间(0,+\infty)内分子的百分数是多少? \sum\limits_{i}\frac{\Delta N_i}{N}=\int_{0}^{\infty}f(v)dv=1\\ 1.{f(v)dv=NdN:在v到v+dv内的分子数占总分子数的百分比Nf(v)dv=dN:在v到v+dv区间内的分子数2.{在给定速率区间v1到v2内的分子百分比是多少?NΔN=∫v1v2f(v)dvv1到v2内的分子数:ΔN=N∫v1v2f(v)dv3.在整个速率区间(0,+∞)内分子的百分数是多少?i∑NΔNi=∫0∞f(v)dv=1
速度归一化条件
3.麦氏速率分布的应用
(1)最可几速率 v p v_p vp
根据
f
(
v
)
f(v)
f(v)函数的极值求导得
v
p
=
2
R
T
M
m
o
l
v_p=\sqrt{\frac{2RT}{M_{mol}}}\\
vp=Mmol2RT
可知,最可几速率与温度和气体的种类有关
(2)麦氏速率分布曲线
要注意的是温度升高,曲线最大值升高,但是还要注意归一化条件:曲线的面积不变
(3)利用 f ( v ) f(v) f(v)求统计平均值
a.平均速率
v
ˉ
=
∫
0
∞
v
f
(
v
)
d
v
\bar v=\int_0^{\infty}vf(v)dv\\
vˉ=∫0∞vf(v)dv
b.均方根速率
v
2
ˉ
=
∫
0
∞
v
2
f
(
v
)
d
v
\bar {v^2}=\int_0^{\infty}{v^2}f(v)dv\\
v2ˉ=∫0∞v2f(v)dv
c.平均动能
ε
ˉ
=
∫
0
∞
1
2
μ
v
2
f
(
v
)
d
v
\bar \varepsilon=\int_0^{\infty}\frac{1}{2}\mu {v^2}f(v)dv\\
εˉ=∫0∞21μv2f(v)dv
总结,求某个和速率有关的统计平均值:M(v)
M
(
v
)
=
∫
0
∞
M
(
v
)
f
(
v
)
d
v
M(v)=\int_0^{\infty}M(v)f(v)dv\\
M(v)=∫0∞M(v)f(v)dv
五、能量按自由度均分原理
{ 单 原 子 分 子 气 体 : 热 运 动 能 量 只 有 平 动 动 能 多 原 子 分 子 气 体 : { 平 动 动 能 转 动 动 能 \begin{cases} 单原子分子气体:热运动能量只有平动动能\\ 多原子分子气体:\begin{cases} 平动动能\\ 转动动能\\ \end{cases} \end{cases} ⎩⎪⎨⎪⎧单原子分子气体:热运动能量只有平动动能多原子分子气体:{平动动能转动动能
1.自由度: i i i
(1)确定一个物体空间位置的独立坐标数 i i i
(2)自由运动质点的自由度
在空间自由运动:i=3
在平面自由运动:i=2
在直线自由运动:i=1
-
问
- 质点在平面做圆运动,自由度i=?
- 质点在空间做曲线运动,自由度?
-
钢棒的自由度
- x,y,z
- α , β , γ \alpha,\beta,\gamma α,β,γ
- 3+3-1
-
刚体的自由度
- 一般:平动+转动:6
-
理想气体分子的自由度
- 单原子:3
- 双原子:5
- 多原子:6
2.能量按自由度均分原理
(1)定理内容
温度为 T 的平衡态时,气体分子的每个自由度上都有一份相同的平均动能,数值为: 1 2 k T \frac{1}{2}kT 21kT
ε ˉ = 3 2 k T \bar \varepsilon=\frac{3}{2}kT εˉ=23kT均匀分布在3个自由度上
(2)一个分子的平均总动能
由自由度判断
ε
ˉ
=
i
2
k
T
\bar \varepsilon=\frac{i}{2}kT
εˉ=2ikT
{
单
原
子
分
子
:
3
2
k
T
双
原
子
分
子
:
5
2
k
T
多
原
子
分
子
:
3
k
T
\begin{cases} 单原子分子:\frac{3}{2}kT\\ 双原子分子:\frac{5}{2}kT\\ 多原子分子:3kT \end{cases}
⎩⎪⎨⎪⎧单原子分子:23kT双原子分子:25kT多原子分子:3kT
3.理想气体的内能E
内 能 : { 平 动 动 能 转 动 动 能 1 m o l 理 想 气 体 ( 自 由 度 为 i ) 的 内 能 : i 2 k T 1 m o l 单 原 子 理 想 气 体 的 内 能 : 3 2 k T 质 量 为 m k g , 自 由 度 为 i 的 气 体 的 内 能 : m M m o l i 2 k T 内能:\begin{cases} 平动动能\\ 转动动能\\ \end{cases}\\ 1mol理想气体(自由度为i)的内能:\frac{i}{2}kT\\ 1mol单原子理想气体的内能:\frac{3}{2}kT\\ 质量为m kg,自由度为i的气体的内能:\frac{m}{M_{mol}}\frac{i}{2}kT\\ 内能:{平动动能转动动能1mol理想气体(自由度为i)的内能:2ikT1mol单原子理想气体的内能:23kT质量为mkg,自由度为i的气体的内能:Mmolm2ikT
总结得出:
E
=
m
M
m
o
l
i
2
k
T
E=\frac{m}{M_{mol}}\frac{i}{2}kT
E=Mmolm2ikT
六、气体分子的碰撞和平均自由能
非平衡态 → \rightarrow →平衡态:通过热运动的相互碰撞实现的
1.气体分子的碰撞机制
非接触性碰撞
(1)分子的有效直径
(2)分子的平均有效直径 d ˉ \bar d dˉ
约 1 0 − 10 10^{-10} 10−10
2.平均碰撞频率,平均自由程
(1)碰撞频率Z
一个分子在1s内和其他分子的碰撞的次数
- 平均碰撞次数 z ˉ \bar z zˉ
(2)自由程 λ \lambda λ
一个分子连续两次碰撞之间通过的路程
- 平均自由程 λ ˉ \bar \lambda λˉ
(3)z和 λ \lambda λ之间的关系
- 1s内通过的路程 v ˉ \bar v vˉ
- 1s内发生碰撞的次数 Z ˉ \bar Z Zˉ
- 每碰一次,路程被折成一段: λ ˉ = v ˉ Z ˉ \bar\lambda=\frac{\bar v}{\bar Z} λˉ=Zˉvˉ
3.平均自由程和碰撞频率的统计规律
(1)平均碰撞次数:
Z
ˉ
\bar Z
Zˉ
Z
ˉ
=
π
d
ˉ
2
⋅
u
ˉ
n
其
中
:
Z
ˉ
是
平
均
碰
撞
次
数
d
ˉ
是
平
均
有
效
直
径
u
ˉ
是
a
分
子
相
对
于
其
他
分
子
的
速
率
n
是
分
子
数
密
度
\bar Z=\pi \bar d^2·\bar u n\\ 其中:\bar Z是平均碰撞次数\\ \bar d是平均有效直径\\ \bar u是a分子相对于其他分子的速率\\ n是分子数密度
Zˉ=πdˉ2⋅uˉn其中:Zˉ是平均碰撞次数dˉ是平均有效直径uˉ是a分子相对于其他分子的速率n是分子数密度
(2)表达式
u
ˉ
=
2
v
ˉ
∴
Z
ˉ
=
π
d
ˉ
2
⋅
2
v
ˉ
n
λ
ˉ
=
v
ˉ
Z
ˉ
=
1
2
π
d
ˉ
2
⋅
n
\bar u=\sqrt{2}\bar v\\ ∴\bar Z=\pi \bar d^2·\sqrt{2}\bar v n\\ \bar\lambda=\frac{\bar v}{\bar Z}=\frac{1}{\sqrt{2}\pi \bar d^2·n}
uˉ=2vˉ∴Zˉ=πdˉ2⋅2vˉnλˉ=Zˉvˉ=2πdˉ2⋅n1
而在宏观状态下:
p
=
n
k
T
,
v
ˉ
=
8
R
T
π
M
m
o
l
∴
Z
ˉ
=
2
π
d
ˉ
2
⋅
8
R
T
π
M
m
o
l
p
k
T
λ
ˉ
=
k
T
2
π
d
ˉ
2
p
—
—
宏
观
表
达
式
p=nkT,\bar v=\sqrt{\frac{8RT}{\pi M_{mol}}}\\ ∴\bar Z=\sqrt{2}\pi \bar d^2·\sqrt{\frac{8RT}{\pi M_{mol}}}\frac{p}{kT}\\ \bar\lambda=\frac{kT}{\sqrt{2}\pi\bar d^2 p}——宏观表达式
p=nkT,vˉ=πMmol8RT∴Zˉ=2πdˉ2⋅πMmol8RTkTpλˉ=2πdˉ2pkT——宏观表达式
-
v
ˉ
\bar v
vˉ增大,自由程会变化吗?
- 会,平均有效直径会变化
u ˉ 是 a 分 子 相 对 于 其 他 分 子 的 速 率 n 是 分 子 数 密 度 \bar u是a分子相对于其他分子的速率\\ n是分子数密度 uˉ是a分子相对于其他分子的速率n是分子数密度