费马小定理简单证明和一些简单应用

本文探讨了费马小定理在数学领域的实用价值,包括判断大数是否为质数的Miller-Rabin算法,简化模幂运算,以及求解逆元等问题。通过巧妙的证法,我们展示了该定理在解决实际问题中的重要作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

打字不变就在纸上证明好了在这里插入图片描述1在这里插入图片描述

这种证法是一种很巧妙的方法,避免了一些复杂概念的引入,很简单的证明了费马小定理

那么费马小定理具体有什么地方可以应用呢
1.我们可以用它判断一些大数是否为质数也就是Miller-Rabin 素数判定算法,它主要运用了费马小定理和二次探索定理,再次不深入探究,只是提出
2.对于计算ab(modp)ab(modp) 可简化
对于素数p,任取跟他互素的数a,有a^(p-1)(mod p)=1
所以任取b,有ab%p=a(b%(p-1))(%p)从而简化运算。
3.可以用来求解逆元。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值