文本相似度之编辑距离算法

编辑距离

1.基本思想:将一个字符转化为另外一个字符所需的最少操作次数,可以是替换字符,插入字符,删除字符,可用与计算两个文本的相似度
2.算法的基本原理:对于字符串a[1:i]和字符串b[1:j]来说,用edit[i][j]表示它们间的编辑距离。
如果a[i]和b[j]相同,则edit[i][j]=edit[i-1][j-1]。
如果a[i]和b[j]不相同,则有如下情况:
1)a[1:i]经过多次操作转化为b[1:j-1],然后再在结尾插入字符b[j]即可,edit[i][j]=edit[i][j-1]+1;
ac----acy
2)a[1:i-1]经过多次操作转化为b[1:j],然后再将字符a[i]删除即可,edit[i][j]=edit[i-1][j]+1;
acy-----ac
3)a[1:i-1]经过多次操作转化为b[1:j-1],然后再将字符a[i]替换为b[j]即可,edit[i][j]=edit[i-1][j-1]+1;
acx—acy
在这三种情况中取最小值即可。其中edit[0][j]表示将空串转为b[1:j]的操作次数,为j;edit[i][0]表示将a[1:i]转为空串的操作次数,为i。
第一种方法:核心思想是动态规划
在这里插入图片描述

session.txt

绿茶
聚福
蜀香坊
蜀香房
食面
香港
麻辣烫
import numpy
from numpy import matrix
class LevenshteinDistance(object):

    def distance(self, a, b):
        """
        计算字符串a和b之间的编辑距离
        """
        edit = [[0 for j in range(len(b) + 1)] for i in range(len(a) + 1)]
        for i in range(len(a)):
            edit[i + 1][0] = i + 1
        for j in range(len(b)):
            edit[0][j + 1] = j + 1

        for i in range(len(a) + 1)[1:]:
            for j in range(len(b) + 1)[1:]:
                flag = b[j - 1] == a[i - 1]
                num = 0 if flag else 1
                edit[i][j] = min(edit[i - 1][j] + 1, edit[i][j - 1] + 1, edit[i - 1][j - 1] + num)
        return edit[-1][-1]     # print(edit[len(a)][len(b)])结束索引的位置
    def similarity(self, a, b):
        """
        计算字符串a和b之间的相似度
        """
        m = max(len(a), len(b))
        d = self.distance(a, b)
        return (m - d) / m

if __name__ == '__main__':
    edit = LevenshteinDistance()
    list1 = []
    result = {}
    for line in open("session.txt", "r", encoding="utf-8"):
        list1.append(line)
    for i in range(0, len(list1)):
        for j in range(i+1, len(list1)):
            print(list1[i].strip('\n')+" "+list1[j].strip('\n'))
            # print(list1[j])
            print(edit.distance(list1[i], list1[j]))
            print(edit.similarity(list1[i], list1[j]))
            # graph = matrix(numpy.identity(len(list1)))
            # graph[i][j]=edit.similarity(list1[i], list1[j])
            # print(graph)

输出结果:

绿茶 聚福
2
0.3333333333333333
绿茶 蜀香坊
3
0.25
绿茶 蜀香房
3
0.25
绿茶 食面
2
0.3333333333333333
绿茶 香港
2
0.3333333333333333
绿茶 麻辣烫
3
0.25
聚福 蜀香坊
3
0.25
聚福 蜀香房
3
0.25
聚福 食面
2
0.3333333333333333
聚福 香港
2
0.3333333333333333
聚福 麻辣烫
3
0.25
蜀香坊 蜀香房
1
0.75
蜀香坊 食面
3
0.25
蜀香坊 香港
2
0.5
蜀香坊 麻辣烫
3
0.25
蜀香房 食面
3
0.25
蜀香房 香港
2
0.5
蜀香房 麻辣烫
3
0.25
食面 香港
2
0.3333333333333333
食面 麻辣烫
3
0.25
香港 麻辣烫
3
0.25

第二种方法:直接导入第三方库

import Levenshtein  # 第三方库实现

def edit_sim(s1, s2):
    maxLen = max(len(s1), len(s2))
    dis = Levenshtein.distance(s1, s2)
    print(dis)
    sim = 1 - dis * 1.0 / maxLen
    return sim

word1 = '绿茶'
word2 = '聚福'
word_sim = edit_sim( word1, word2 )
print(word_sim)

结果:

2
0.33333333333333337


评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值