AcWing《PAT甲级辅导课》第7章 数学

15 篇文章 1 订阅
9 篇文章 2 订阅

第7章 数学


1049. Counting Ones

笔记

  • 可参考《算法基础课》数位统计DP的思路,这题只是那题的特例
#include <iostream>
#include <cmath>
#include <vector>
using namespace std;
const int N = 13;       // 位数

int get(int l, int r, vector<int> num) {
    int res = 0;
    for (int i = l; i >= r; i--) 
        res = res * 10 + num[i]; 
    return res;
}

int count (int n, int x) {
    if (!n) return 0;       // 特判
    
    vector<int> num;
    while(n) {
        num.push_back(n % 10);
        n /= 10;
    }
    n = num.size();
    
    int res = 0;
    for (int i = n - 1 - !x; i >= 0; i--) {
        if (i < n - 1) {
            // 左边存在
            res += get(n - 1, i + 1, num) * pow(10, i);
            if (!x) res -= pow(10, i);      // 如果是计算0的位数,则不能让左边为全为0
        }
        
        if (x == num[i]) res += get(i - 1, 0, num) + 1;
        else if (x < num[i]) res += pow(10, i);
    }
    
    return res;
}

int main() {
    int n;
    cin >> n;
    cout << count(n, 1) << endl;
    return 0;
}

1059. Prime Factors

笔记

  • 当找到 n n n的质因子 a a a时,只需再从 n / a n / a n/a找下一个质因子,这样可把时间复杂度降到 O ( n ) O(\sqrt{n}) O(n )
  • 注意
    • 题目特判 1 1 1的情况
    • 写成i <= n / i,防止乘法溢出
    • 当循环结束后, n n n仍然可能是一个质因数,仍需要考虑
      • 如果它是,则一定是最大的质因数且只有一个
      • 如果不是,它一定是 1 1 1
#include <iostream>
using namespace std;

string res;

void add(int x, int cnt) {
    res += to_string(x);
    if (cnt > 1) res += "^" + to_string(cnt);
    res += "*";
}

int main() {
    int n;
    cin >> n;
    
    if (n == 1) res = "1=1";
    else {
        res = to_string(n) + "=";
        for (int i = 2; i <= n / i; i++)
            if (n % i == 0) {
                int cnt = 0;
                while(n % i == 0) {
                    cnt++;
                    n /= i;
                }
                add(i, cnt);
            }
        if (n > 1) add(n, 1);
        res.pop_back();
    }
    cout << res << endl;
    
    return 0;
}

1081. Rational Sum

笔记

  • 通分再计算,由于可能会产生乘法溢出,因此需要尽可能约分,即计算最大公约数后,分子和分母立即除以最大公约数
  • 最大公约数可通过辗转相除法计算
  • 假设 t = gcd ⁡ ( b , d ) t = \gcd(b, d) t=gcd(b,d),则可以根据下式进行更深层的约分(否则过不了其中一个测试用例)

d × a + b × c b × d = d t × a + b t × c b t × d \frac{d \times a + b \times c}{b \times d}=\frac{ \frac{d}{t} \times a + \frac{b}{t} \times c}{ \frac{b}{t} \times d} b×dd×a+b×c=tb×dtd×a+tb×c

#include <iostream>
using namespace std;
typedef long long LL;

LL gcd(LL a, LL b) {
    return b ? gcd(b, a % b) : a;
}

void f(LL& a, LL& b) {
    // 约分
    LL d = gcd(a, b);
    a = a / d;
    b = b / d;
}

int main() {
    int n;
    cin >> n;
    
    LL a, b, as = 0, bs = 1;
    while(n--) {
        scanf("%lld/%lld", &a, &b);
        f(a, b);        // 约分
        
        LL t = gcd(b, bs);
        as = bs / t * a + b / t * as;
        bs = b / t * bs;
        
        f(as, bs);       // 约分
    }
    
    if (as % bs == 0) printf("%lld\n", as / bs);
    else if (as >= bs) printf("%lld %lld/%lld\n", as / bs, as % bs, bs);
    else printf("%lld/%lld\n", as, bs);
    
    return 0;
}

1088. Rational Arithmetic

笔记

  • 根据通分公式计算即可,难点在于各种输出要求
#include <iostream>
using namespace std;
typedef long long LL;

LL gcd(LL a, LL b) {
    return b ? gcd(b, a % b) : a;
}

void f(LL& a, LL& b) {
    LL t = gcd(a, b);
    a /= t;
    b /= t;
}

string format(LL a, LL b) {
    bool flag = (a < 0) ^ (b  < 0);
    a = abs(a);
    b = abs(b);
    
    string res;
    if (a % b == 0) res = to_string(a / b);
    else if (a > b) res = to_string(a / b) + ' ' + to_string(a % b) + '/' + to_string(b);
    else res = to_string(a) + '/' + to_string(b);
    
    if (flag) res = "(-" + res + ")";
    return res;
}

string add(LL a, LL b, LL c, LL d, LL &p, LL& q) {
    LL t = gcd(b, d);
    p = b / t * c + d / t * a;
    q = b / t * d;
    f(p, q);
    return format(p, q);
}

string sub(LL a, LL b, LL c, LL d, LL &p, LL& q) {
    LL t = gcd(b, d);
    p = d / t * a - b / t * c;
    q = b / t * d;
    f(p, q);
    return format(p, q);
}

string mul(LL a, LL b, LL c, LL d, LL &p, LL& q) {
    LL t = gcd(b, d);
    p = a * c;
    q = b * d;
    f(p, q);
    return format(p, q);
}

string div(LL a, LL b, LL c, LL d, LL &p, LL& q) {
    if (b == 0 || c == 0) return "Inf";
    
    LL t = gcd(b, d);
    p = a * d;
    q = b * c;
    f(p, q);
    return format(p, q);
}

void print(LL a, LL b, LL c, LL d) {
    
    f(a, b);        // 约分
    f(c, d);        // 约分
    string x_str = format(a, b);
    string y_str = format(c, d);
    
    LL p, q;        // 结果

    cout << x_str + " + " + y_str + " = " + add(a, b, c, d, p, q) << endl;
    cout << x_str + " - " + y_str + " = " + sub(a, b, c, d, p, q) << endl;
    cout << x_str + " * " + y_str + " = " + mul(a, b, c, d, p, q) << endl;
    cout << x_str + " / " + y_str + " = " + div(a, b, c, d, p, q) << endl;
    
    
}

int main() {
    LL a, b, c, d;
    scanf("%lld/%lld %lld/%lld", &a, &b, &c, &d);
    
    print(a, b, c, d);
    
    return 0;
}

1096. Consecutive Factors

笔记

  • 穷举所有情况即可
#include <iostream>
#include <vector>
using namespace std;


int main() {
    int n;
    cin >> n;
    
    vector<int> res, num;
    // 枚举所有质数
    for (int i = 2; i <= n / i; i++)
        if (n % i == 0) {
            num.clear();
            // 尝试以此为最小的因子构造
            int m = n, j = i;
            while(m % j == 0) {
                num.push_back(j);
                m /= j;
                j++;
            }
            if (num.size() > res.size()) res = num;
        }
    if (res.empty()) res.push_back(n);      // 自身是质数的情况
    
    cout << res.size() << endl;
    cout << res[0];
    for (int i = 1; i < res.size(); i++) cout << '*' << res[i];
    cout << endl;
    
    return 0;
}

1103. Integer Factorization

在这里插入图片描述

m = 169 , n = 5 , p = 2 m=169,n=5,p=2 m=169,n=5,p=2

物品 i i i体积 j j j重量 k k k价值 f f f
1111
2412
3913
13169113

笔记

  • 本题可看做是“二维完全背包具体方案”问题,可参考《算法提高课》“完全背包问题”、“二维费用的背包问题”和“背包问题求具体方案”
  • 问题建模
    • 假设 t t t是要分解的整数, n n n是要分解的个数, p p p是幂,则可看做一种背包问题,记 N = ⌊ m 1 p ⌋ N=\lfloor m^{\frac{1}{p}} \rfloor N=mp1
      • 一共有 N N N种物品 a 1 , a 2 , ⋯   , a N a_1,a_2,\cdots, a_N a1,a2,,aN
      • i i i个物品 a i a_i ai的体积 v i = i p v_i=i^p vi=ip,重量 m i ≡ 1 m_i \equiv 1 mi1,价值 w i = i w_i=i wi=i
      • 背包的体积为 t t t,最大承重量为 n n n
      • 问在背包的体积和重量达到最大值的条件下,怎么装物品才能让背包的价值最大?
  • 已有背包问题模型
    • “完全背包问题”:可重复选择
    • “二维费用的背包问题”:体积、重量、价值
    • “背包问题求具体方案”:需要确定怎么选
      • f[i][j][k] == f[i-1][j][k]表示不选第 i i i个物品
      • f[i][j][k] == f[i][j-v][k-1]+i表示选第 i i i个物品
  • 算法实现细节
    • 为了判断是否有解,需要把f初始化为负数
    • 最终解是f[m][n][k]
#define LOCAL
#include <iostream>
#include <cmath>
#include <cstring>
using namespace std;
const int N = 410, M = 21;
int f[M][N][N];         // 考虑前i个物品,体积恰好为j,重量恰好为k的最大价值


int main() {
    int m, n, p;
    cin >> m >> n >> p;
    
    memset(f, 0xef, sizeof f);      // 初始化为负数
    f[0][0][0] = 0;                 // 什么都不选时价值为0
    
    // 动态规划
    int i = 1;
    int v = pow(i, p);
    while(v <= m) {
        // 构造第i个物品,直到第i个物品的体积超出背包所能容纳的体积
        for (int j = 0; j <= m; j++)            // 遍历背包最大体积的所有可能情况(目标)
            for (int k = 0; k <= n; k++) {      // 遍历背包最大重量的所有可能情况(个数)
                f[i][j][k] = f[i - 1][j][k];    // 默认不选
                if (j >= v && k >= 1) 
                    f[i][j][k] = max(f[i][j][k], f[i][j - v][k - 1] + i);  // 状态转移
            }
        i++;			// 注意这个语句必须在计算v之前,否则不对
        v = pow(i, p);
    }
    int max_i = i - 1;      // 物品总数
    
    // 输出结果
    if (f[max_i][m][n] < 0) puts("Impossible");     // 无解
    else {
        printf("%d = ", m);
        string res;
        for (int i = max_i; i > 0; i--) {
            int v = pow(i, p);
            while (m >= v && n >= 1 && f[i][m][n] == f[i][m - v][n - 1] + i) {
                res += to_string(i) + '^' + to_string(p) + " + ";
                m -= v;
                n--;
            }
        }
        cout << res.substr(0, res.size() - 3) << endl;
    }
    
    return 0;
}

1104. Sum of Number Segments

笔记

  • 对于第 i i i个数,它在所有段求和中出现的次数为 i × ( n − i + 1 ) i \times (n - i + 1) i×(ni+1)
    • 考虑含有 a 1 a_1 a1的项,显然其出现的次数为 n n n
    • 考虑含有 a 2 a_2 a2的项,可分为两部分,共出现 2 ( n − 1 ) 2(n-1) 2(n1)
      • a 1 a_1 a1且有 a 2 a_2 a2的项,出现次数为 n − 1 n-1 n1
      • 没有 a 1 a_1 a1但有 a 2 a_2 a2的项,出现次数也为 n − 1 n-1 n1
    • 考虑含有 a 3 a_3 a3的项,可分为三部分,同理共出现 3 ( n − 2 ) 3(n-2) 3(n2)
    • 考虑含有 a i a_i ai的项,猜测共出现 i ( n − i + 1 ) i(n- i + 1) i(ni+1)
  • 在计算时,先把double类型的写在前边可防止计算乘法时溢出
  • 不能用g++编译,需要用更高级的clang++编译才能通过
#include <iostream>
using namespace std;

int main() {
    int n;
    cin >> n;
    long double res, a;
    for (int i = 1; i <= n; i++) {
        cin >> a;
        res += a * i * (n - i + 1);     // 先写double类型的防止乘法溢出
    }
    
    printf("%.2Lf\n", res);
    
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值