使用Jupyter Notebook
Jupyter Notebook(此前也被称为IPython Notebook)是一个交互式笔记本,支持多种编程语言。在需要文本和代码结合的场景下进行交流时,它是一个不可多得的首选环境。
Jupyter是Anconda默认安装的部分之一。所以已经安装Anconda的话,就可以马上进入Jupyter Notebook了。打开终端输入如下命令:
(base) C:\Users\Administrator>jupyter notebook
单机右上角的“New”按钮,选择类型为Python3的Notebook,创建一个可以运行Python的笔记本,如图:
在打开的界面下。尝试输入:
print ('hello jupyter!')
并按下Shift+Enter组合键之后,在单元格下面就会显示执行结果,光标也会被移动到一个新的单元格中。同时接下来尝试输入一段有意义的代码。例如:
(这个是语法有误之后的报错)
for i in range(10):
if i%2 == 0:
print(i)
这次我们单机这个符号运行:
紧接着你也可以对上面第一行代码进行修改,你会发现修改之后单元格下方的结果马上就变成新的内容,那么此次如果我们不想重现运行整个脚本,志向调和智能某一处单元格执行逻辑的话,这个特性就非常人性化,当然重新计算整个Notebook,只要单击Cell→Run All即可。另外,重命名:
Numpy基础知识
1.基本概念
Numpy包的核心是ndarray对象。它封装了相同数据类型的n维数组,许多操作作为实现执行高性能,已经提前进行编译了。
Numpy的数组类为ndarry,通常也被成为数组,但是和标准Python库类array并不相同,后者只处理一维数组和提供少量功能,更多重要的ndarray对象属性有:
1. ndarray.ndim 数组轴的个数
2. ndarray.shape 数组的维度。一个n排m列的矩阵,它的shape属性将是(n,m)
3. ndarray.size 数组元素的总个数,例如:(n,m)的size属性值是n*m
4. ndarray.dtype 一个用来描述数组中元素类型的对象,可以通过创造或指定dtype使用标准python类型。另外,Numpy提供它自己的数据类型
5. ndarray.itemsize 数组中每个元素的字节大小。例如:一个元素类型为float64的数组itemsize属性值为8(64/8),又如,一个元素类型为complex32的数组item属性为4(32/8)
6. ndarray.data 包含书籍数组元素的缓冲区,通常我们不需要使用这个属性,因为我们总是通过索引来使用数组中的元素。
注:这里讲一个函数np.arange
这是Numpy的官方链接,在这里你可以搜索你不懂的一些函数或者其他方法
numpy.arange([start,]stop,[step,]dtype=None,*,like=None)
star: 起始,整数或实数,可选
stop:停止,整数或实数
step:整数或实数,可选
dtype:输出数组的类型,如果未给出,则从其他输入参数推断数据类型。
像:array_like
引用对象,允许创建不是Numpy数组的数组。若传入的类似数组的数组***like***支持***__array__function__***协议,则将由它定义结果,在此种情况下,它确保创建与通过此参数传递的数组对象兼容的数组对象
2.创建数组
创建数组最常见的错误是包括用多个数值参数调用array,而不是提供一个由数值组成的列表作为一个参数。
a = np.array(1,2,3,4)
错误
a = np.array([1,2,3,4])
正确
import numpy as np
a = np.array([2,3,4])
a
array([2, 3, 4])
a.dtype
dtype('int32')
b = np.array([1.2,3.5,5.1])
b.dtype
dtype('float