EEG-fNIRS数据分析

本文探讨了EEG-fNIRS混合技术在阿尔茨海默病四类分类中的应用。通过结合EEG的宏观电活动和fNIRS的血红蛋白变化,提供了无创、运动伪迹抵抗强的功能脑成像方法。研究涉及29名受试者,包括健康对照和不同程度的阿尔茨海默病患者。项目使用Python、Jupyter和深度学习技术,分析了数据并评估了每种认知任务的贡献,表明EEG与fNIRS的联合使用在分类任务中表现最佳。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

多模式监测:

EEG: 通过无源电压评估(passive voltages evaluations)来捕捉大脑电活动的宏观时间动态。

fNIRS:通常依赖于通过光纤或纤维束向头皮内射入和探测光线。光纤在电方面绝缘于受试者,且它们可以使光源和探测器离头皮足够远。不同的仪器技术程序被开发出来,并用于近红外光谱监测。具体可以识别出三个主要类别,为时域(TD)、频域(FD)和连续波(CW)记录系统。TD系统使用非常短的光脉冲(picoseconds),而FD系统使用无线电频率调制的光(50 MHz)来研究感兴趣的组织。由于其简单的技术特点,连续波CW系统是临床和非临床环境中最广泛的系统。CW系统依赖于测量通过组织的光的CW成分。它们可以估计血红蛋白和氧合随时间的变化(通过使用先验微分路径长度因子的改进的Beer Lambert方程),但它们不能在通道水平上提供组织光学特性的绝对估计(吸收和减少散射系数)。当空间分辨光谱方法被采用,它们可以测量区域脑氧饱和度(rSO2)和部分组织氧提取(FTOE)随时间的变化。

在fNIRS与EEG联合中的应用。整篇文章中提到和/或描述近红外光谱时,我们指的是CWfNIRS,除非明确提到TD或FD系统。

含氧和脱氧血红蛋白(O2HbHHb)

EEG &fNIRS 共同点:头皮定位,无创。  

优点:

1.能较好地抵御运动伪迹,无明显物理限制。

2.无高强度磁场或电离辐射暴露。

3.硬件成本显著低于大多数其他功能性脑成像方法。

近日在准备一个fNIRS与EEG联合数据分析的项目,过程中发现fNIRS数据分析相关开源项目并不多,联合数据分析更是少之又少,几番筛选找到以下论文及其源码。

An EEG-fNIRS hybridization technique in the four-class classification of alzheimer’s disease

https://doi.org/10.1016/j.jneumeth.2020.108618
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值