1019. 数字黑洞 (20)
给定任一个各位数字不完全相同的4位正整数,如果我们先把4个数字按非递增排序,
再按非递减排序,然后用第1个数字减第2个数字,将得到一个新的数字。一直重复这样做,
我们很快会停在有“数字黑洞”之称的6174,这个神奇的数字也叫Kaprekar常数。
例如,我们从6767开始,将得到
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
现给定任意4位正整数,请编写程序演示到达黑洞的过程。
输入格式:
输入给出一个(0, 10000)区间内的正整数N。
输出格式:
如果N的4位数字全相等,则在一行内输出“N - N = 0000”;否则将计算的每一步在一行内输出,
直到6174作为差出现,输出格式见样例。注意每个数字按4位数格式输出。
输入样例1:
6767
输出样例1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
输入样例2:
2222
输出样例2:
2222 - 2222 = 0000
这道题样例范围(0, 10000),有个位数,第二个测试点是个位数,很坑。再就是还有6174注意一下
#include<iostream>
#include<algorithm>
using namespace std;
bool com(int a,int b)
{
return a>b;
}
int fan(int n)
{
int a[4],max=0,min=0,i=0,temp;
while(i<=4) //这里不能写while(n!=0) 比如输入9998
{
a[i++]=n%10;
n/=10;
}
sort(a,a+4);
for(i=0;i<4;i++)
min=min*10+a[i];
sort(a,a+4,com);
for(i=0;i<4;i++)
max=max*10+a[i];
temp=max-min;
printf("%04d - %04d = %04d\n",max,min,temp);
return temp;
}
int main()
{
int n,temp,flag=1,n1;
cin>>n;
n1=n;
temp=n1%10;
n1/=10;
n=fan(n);
}
while(n!=6174&&n!=0);
return 0;
}