Deep Knowledge Tracing

1 Abstract

知识追踪——机器在学生与课程作业交互时对他们的知识进行建模——在计算机支持的教育中是一个公认的问题。尽管有效地建模学生知识会产生很高的教育影响,但这项任务存在许多固有的挑战。在本文中,我们探讨了使用循环神经网络 (RNN) 对学生学习进行建模的效用。 RNN 系列模型与以前的方法相比具有重要优势,因为它们不需要对人类领域知识进行显式编码,并且可以捕获更复杂的学生知识表示。使用神经网络可以显着提高一系列知识跟踪数据集的预测性能。此外,学习模型可用于智能课程设计,并允许直接解释和发现学生任务中的结构。这些结果为知识追踪和 RNN 的示例性应用任务提出了一条有希望的新研究方向。

2 Introduction

本文贡献:

1.提出一种将学生交互编码作为循环神经网络输入的新方法;
2.相较于以往的知识追踪模型,AUC比之前最好的结果提高了25%;
3.这篇论文提出的模型不需要专家标注(自动学习概念模式);
4.可以发现练习题的影响并且生成改进的练习课程。

知识追踪形式化:

给定学生在一个特定学习任务上的互动观察 x 0 x_0 x0. . . x t x_t xt,预测他们下一次互动$x_{t + 1} $的各个方面

交互形式: x t x_t xt={ q t q_t qt, a t a_t at}

交互形式中 q t q_t qt代表习题序号, a t a_t at代表是否答对答错

数据可视化例子

注解:横轴是答题数量,总共五十道题,纵轴圆圈代表六个知识点,上面的实心圆代表答对该题,空心圆代表答错该题,右边蓝绿色条代表预测的概率,从蓝到浅绿色代表概率逐渐增大(越绿代表预测成功的概率越高)。中间蓝绿色网格代表预测的概率。

3 Deep Knowledge Tracing

3.1 模型

注解:DKT的模型就是RNN

模型公式:
h t = t a n h ( W h x + W h h h t − 1 + b h ) y t = σ ( W y h h t + b y ) h_t = tanh\big(W_{hx} + W_{hh}h_{t-1} + b_h \big)\\ y_t = \sigma\big(W_{yh}h_t + b_y \big) ht=tanh(Whx+Whhht1+bh)yt=σ(Wyhht+by)
模型图:

3.2 输入与输出

为了在学生交互上训练 RNN 或 LSTM,有必要将这些交互转换为一系列固定长度的输入向量 x t x_t xt。使用one-hot编码实现。

确定输入维度(input_size)和隐藏层维度(hidden_size)即可确定输出维度。

3.3 优化

使用二元交叉熵进行优化,公式为:
L = ∑ t ℓ ( y T δ ( q t + 1 ) , a t + 1 ) L = \sum_{t}\ell\big(y^T\delta\big(q_{t+1}\big),a_{t+1} \big) L=t(yTδ(qt+1),at+1)

4 Datasets

本文共使用三个数据集用于实验,分别是imulated data, Khan Academy Data, and the Assistments benchmark dataset.

在这里插入图片描述

相较于贝叶斯算法的最高AUC值的0.69,DKT达到了0.86,共有25%的提升。

5 Code

代码可参考:https://github.com/YAO0747/study/tree/master/DKT

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值