西瓜书第三章

广义线性模型
考虑单点可微函数 g ( ⋅ ) g(\cdot) g(),令 y = g − 1 ( ω T x + b ) y=g^{-1}(\omega^{T}x+b) y=g1(ωTx+b),这样得到的模型称为“广义线性模型”,其中函数 g ( ⋅ ) g(\cdot) g()称为“联系函数”。显然,对数线性回归是广义线性模型在 g ( ⋅ ) = ln ⁡ ( ⋅ ) g(\cdot)=\ln (\cdot) g()=ln()时的特例。

对数几率回归

在线性回归模型的基础上,改进以完成分类任务。关键在于寻找一个单调可微函数,将分类任务的真实标记 y y y与线性回归模型的预测值联系起来。
考虑二分类任务
y ∈ { 0 , 1 } ⇔ z = ω T x + b y\in \{0,1\}\Leftrightarrow z=\omega^Tx+b y{0,1}z=ωTx+b
于是,我们需将实值z转换为0/1值。

  1. 单位跃阶函数:
    y = { 0 , z < 0 0.5 , z = 0 1 , z > 0 y= \left\{ \begin{aligned} 0,\quad z<0\\ 0.5,\quad z=0\\ 1,\quad z>0 \end{aligned} \right. y= 0,z<00.5,z=01,z>0
    单位跃阶函数不连续,从而不可微,故不能直接作为联系函数。
  2. 对数几率函数
    y = 1 1 + e − z y=\frac{1}{1+e^{-z}} y=1+ez1
    对数几率函数是一种Sigmoid函数。
    Sigmoid函数即形似S的函数,对率函数是Sigmoid函数最重要代表。
    在这里插入图片描述

代入广义线性模型中得到
y = 1 1 + e − ( ω T x + b ) = e ω T x + b 1 + e ω T x + b 1 − y = e − ( ω T x + b ) 1 + e − ( ω T x + b ) = 1 1 + e ω T x + b y 1 − y = e ω T x + b ln ⁡ y 1 − y = ω T x + b \begin{aligned} &y=\frac{1}{1+e^{-(\omega^{T}x+b)}}=\frac{e^{\omega^Tx+b}}{1+e^{\omega^Tx+b}} \\ &1-y=\frac{e^{-(\omega^Tx+b)}}{1+e^{-(\omega^Tx+b)}}=\frac{1}{1+e^{\omega^Tx+b}}\\ &\frac{y}{1-y}=e^{\omega^Tx+b}\\ &\ln \frac{y}{1-y}=\omega^Tx+b \end{aligned} y=1+e(ωTx+b)1=1+eωTx+beωTx+b1y=1+e(ωTx+b)e(ωTx+b)=1+eωTx+b11yy=eωTx+bln1yy=ωTx+b
若将y视为样本x作为正例的可能性,则1-y为样本x为反例的可能性,两者的比值 y 1 − y \frac{y}{1-y} 1yy称为“几率”,反映了样本x作为正例的可能性。对几率取对数则得到“对数几率”: ln ⁡ y 1 − y \ln \frac{y}{1-y} ln1yy
l n y 1 − y = ω T x + b ln \frac{y}{1-y}=\omega^Tx+b ln1yy=ωTx+b
实际上是用线性回归模型的预测结果去逼近真实的对数几率,因此该模型也称为“对数几率回归”。(虽然名字叫做回归,但实际上是一种分类学习方法

对数几率回归的优点

  1. 它是直接对分类的可能性进行建模,无需事先假设数据的分布,这样就避免了假设分布不准确所带来的问题。
  2. 它不仅预能预测出类别,而是可以得到近似概率预测,这对许多需要利用概率辅助决策的任务很有用。
  3. 对率函数是任意阶可导的凸函数,有很好的数学性质,现有的很多数值优化算法都可以直接用于求取最优解。

求解对率回归模型中的参数
将y视为类后验概率估计 p ( y = 1 ∣ x ) p(y=1|x) p(y=1∣x),则对率函数可重写为 ln ⁡ p ( y = 1 ∣ x ) p ( y = 0 ∣ x ) = ω T x + b \ln \frac{p(y=1|x)}{p(y=0|x)}=\omega^Tx+b lnp(y=0∣x)p(y=1∣x)=ωTx+b
由于 p ( y = 1 ∣ x ) + p ( y = 0 ∣ x ) = 1 p(y=1|x)+p(y=0|x)=1 p(y=1∣x)+p(y=0∣x)=1,从而有 y = p ( y = 1 ∣ x ) = e ω T x + b 1 + e ω T x + b 1 − y = p ( y = 0 ∣ x ) = 1 1 + e ω T x + b \begin{aligned} y=p(y=1|x)=\frac{e^{\omega^Tx+b}}{1+e^{\omega^Tx+b}} \\ 1-y=p(y=0|x)=\frac{1}{1+e^{\omega^Tx+b}} \end{aligned} y=p(y=1∣x)=1+eωTx+beωTx+b1y=p(y=0∣x)=1+eωTx+b1于是可以通过极大似然法来估计 ω \omega ω b b b。给定数据集 { ( x i , y i ) } i = 1 m \{(x_i,y_i)\}_{i=1}^m {(xi,yi)}i=1m,对率回归模型最大化“对数似然”
l ( ω ; b ) = ∑ i = 1 m ln ⁡ p ( y i ∣ x i ; ω , b ) l(\omega;b)=\sum_{i=1}^m{\ln p(y_i|x_i;\omega,b)} l(ω;b)=i=1mlnp(yixi;ω,b)即令每个样本属于其真实标记的概率越大越好。为了便于讨论,令 β = ( ω ; b ) , x ^ = ( x ; 1 ) \beta=(\omega;b),\quad \hat{x}=(x;1) β=(ω;b),x^=(x;1),则 ω T x + b \omega^Tx+b ωTx+b可以简写为 β T x ^ \beta^T\hat{x} βTx^。再令 p 1 ( x ^ ; β ) = p ( y = 1 ∣ x ^ ; β ) , p 0 ( x ^ ; β ) = p ( y = 0 ∣ x ^ ; β ) = 1 − p 1 ( x ^ ; β ) p_1(\hat{x};\beta)=p(y=1|\hat{x};\beta),p_0(\hat{x};\beta)=p(y=0|\hat{x};\beta)=1-p_1(\hat{x};\beta) p1(x^;β)=p(y=1∣x^;β),p0(x^;β)=p(y=0∣x^;β)=1p1(x^;β),则上式中的似然项可重写为 p ( y i ∣ x i ; ω , b ) = y i p 1 ( x ^ i ; β ) + ( 1 − y i ) p 0 ( x ^ i ; β ) p(y_i|x_i;\omega,b)=y_ip_1(\hat{x}_i;\beta)+(1-y_i)p_0(\hat{x}_i;\beta) p(yixi;ω,b)=yip1(x^i;β)+(1yi)p0(x^i;β),进一步代入得
l ( ω ; b ) = ∑ i = 1 m ln ⁡ [ y i p 1 ( x ^ i ; β ) + ( 1 − y i ) p 0 ( x ^ i ; β ) ] = ∑ i = 1 m ln ⁡ [ y i e ω T x i + b 1 + e ω T x i + b + ( 1 − y i ) 1 1 + e ω T x i + b ] = ∑ i = 1 m ln ⁡ [ y i e β T x ^ i 1 + e β T x ^ i + ( 1 − y i ) 1 1 + e β T x ^ i ] = ∑ i = 1 m ln ⁡ [ y i e β T x ^ i − y i + 1 1 + e β T x ^ i ] = ∑ i = 1 m [ ln ⁡ ( y i e β T x ^ i − y i + 1 ) − ln ⁡ ( 1 + e β T x ^ i ) ] = ∑ y i = 0 − ln ⁡ ( 1 + e β T x ^ i ) + ∑ y i = 1 [ ln ⁡ ( e β T x ^ i ) − ln ⁡ ( 1 + e β T x ^ i ) ] = − ∑ y i = 0 ln ⁡ ( 1 + e β T x ^ i ) + ∑ y i = 1 [ β T x ^ i − ln ⁡ ( 1 + e β T x ^ i ) ] = ∑ i = 1 m [ y i β T x ^ i − ln ⁡ ( 1 + e β T x ^ i ) ] \begin{aligned} l(\omega;b)&=\sum_{i=1}^m{\ln \left[ y_ip_1(\hat{x}_i;\beta)+(1-y_i)p_0(\hat{x}_i;\beta)\right]}\\ &=\sum_{i=1}^m{\ln \left[y_i\frac{e^{\omega^Tx_i+b}}{1+e^{\omega^Tx_i+b}}+(1-y_i)\frac{1}{1+e^{\omega^Tx_i+b}}\right]}\\ &=\sum_{i=1}^m{\ln \left[y_i\frac{e^{\beta^T\hat{x}_i}}{1+e^{\beta^T\hat{x}_i}}+(1-y_i)\frac{1}{1+e^{\beta^T\hat{x}_i}}\right]}\\ &=\sum_{i=1}^m{\ln \left[\frac{y_ie^{\beta^T\hat{x}_i}-y_i+1}{1+e^{\beta^T\hat{x}_i}}\right]}\\ &=\sum_{i=1}^m{\left[\ln (y_ie^{\beta^T\hat{x}_i}-y_i+1)-\ln (1+e^{\beta^T\hat{x}_i})\right]}\\ &=\sum_{y_i=0}{-\ln (1+e^{\beta^T\hat{x}_i})}+\sum_{y_i=1}{\left[\ln(e^{\beta^T\hat{x}_i})-\ln(1+e^{\beta^T\hat{x}_i})\right]}\\ &=-\sum_{y_i=0}{\ln (1+e^{\beta^T\hat{x}_i})}+\sum_{y_i=1}{\left[\beta^T\hat{x}_i-\ln(1+e^{\beta^T\hat{x}_i})\right]}\\ &=\sum_{i=1}^m{\left[y_i\beta^T\hat{x}_i-\ln(1+e^{\beta^T\hat{x}_i})\right]} \end{aligned} l(ω;b)=i=1mln[yip1(x^i;β)+(1yi)p0(x^i;β)]=i=1mln[yi1+eωTxi+beωTxi+b+(1yi)1+eωTxi+b1]=i=1mln[yi1+eβTx^ieβTx^i+(1yi)1+eβTx^i1]=i=1mln[1+eβTx^iyieβTx^iyi+1]=i=1m[ln(yieβTx^iyi+1)ln(1+eβTx^i)]=yi=0ln(1+eβTx^i)+yi=1[ln(eβTx^i)ln(1+eβTx^i)]=yi=0ln(1+eβTx^i)+yi=1[βTx^iln(1+eβTx^i)]=i=1m[yiβTx^iln(1+eβTx^i)]
从而最大化 l ( ω ; b ) l(\omega;b) l(ω;b)等价于最小化
l ( β ) = ∑ i = 1 m ( − y i β T x ^ i + ln ⁡ ( 1 + e β T x ^ i ) ) l(\beta)=\sum_{i=1}^m{\left(-y_i\beta^T\hat{x}_i+\ln(1+e^{\beta^T\hat{x}_i})\right)} l(β)=i=1m(yiβTx^i+ln(1+eβTx^i)) l ( β ) l(\beta) l(β)是关于 β \beta β的高阶可导函数,根据凸优化理论,经典的数值优化方法如梯度下降法、牛顿法等都可求得其最优解,于是就得到 β ∗ = a r g m i n β l ( β ) \beta^*=argmin_{\beta}l(\beta) β=argminβl(β)
例如牛顿法,其第t+1次轮迭代解的更新公式为
β t + 1 = β t − ( ∂ 2 l ( β ) ∂ β ∂ β T ) − 1 ∂ l ( β ) ∂ β \beta^{t+1}=\beta^{t}-{\left(\frac{\partial^2l(\beta)}{\partial\beta\partial\beta^T}\right)^{-1}\frac{\partial l(\beta)}{\partial\beta}} βt+1=βt(ββT2l(β))1βl(β)
其中关于 β \beta β的一阶、二阶导数分别为
∂ l ( β ) ∂ β = − ∑ i = 1 m x ^ i ( y i − p 1 ( x ^ i ; β ) ) ∂ 2 l ( β ) ∂ β ∂ β T = ∑ i = 1 m x ^ i x ^ i T p 1 ( x ^ i ; β ) ( 1 − p 1 ( x ^ i ; β ) ) \begin{aligned} \frac{\partial l(\beta)}{\partial \beta}&=-\sum_{i=1}^m{\hat{x}_i(y_i-p_1(\hat{x}_i;\beta))}\\ \frac{\partial^2l(\beta)}{\partial\beta\partial\beta^T}&=\sum_{i=1}^m{\hat{x}_i\hat{x}_i^Tp_1(\hat{x}_i;\beta)(1-p_1(\hat{x}_i;\beta))} \end{aligned} βl(β)ββT2l(β)=i=1mx^i(yip1(x^i;β))=i=1mx^ix^iTp1(x^i;β)(1p1(x^i;β))

【小试牛刀】

编程实现对率回归,并给出西瓜数据集3.0a上的结果。

import numpy as np
import pandas as pd
import xlrd

#第一步导入数据
DataSet=pd.read_excel("西瓜数据集3.0a.xlsx")
Data=DataSet.values
#print(Data.shape) #17行4列
X=np.delete(Data,0,1)#在Data的copy基础上删除第一列编号
X=np.delete(X,2,1)
#print(X)
y=Data[:,3]
#print(y)#仍然是ndarray

#利用牛顿法求解
def calp1(x,Beta):
    """
    求解样本x在参数beta下取正例的概率p1
    此处Beta为列向量(3,1),x为列向量(3,1)
    """
    temp=np.exp(np.dot(x.T,Beta))
    p1=temp/float(1+temp)
    return p1
    
def calpartial1(X_hat,y,beta):
    """
    求解l(beta)关于参数beta的一阶导数
    X_hat[i]是行向量,每一行代表一个样本
    """
    m=len(y)
    partial1=0
    for i in range(m):
        x_hat=X_hat[i].reshape(3,1)#把样本x变为列矩阵
        temp=np.dot(x_hat,y[i]-calp1(x_hat,beta))
        partial1=partial1+temp
    return -partial1

def calpartial2(X_hat,y,beta):
    """
    求解l(beta)关于beta的二阶导数
    beta为列向量
    """
    m=len(y)
    partial2=0
    for i in range(m):
        x_hat=X_hat[i].reshape(3,1)#把样本x变为列矩阵
        xxT=np.dot(x_hat,x_hat.T)
        p1=calp1(x_hat,beta)
        temp=p1*(1-p1)*xxT
        partial2+=temp
    return partial2

def LR(X,y,beta,error):
    """
    error为误差
    """
    #在数据集X(每行为一个样本)添加一列1
    #方法一
    X_hat=np.insert(X,2,values=1,axis=1)
    """
    col=np.ones((17,1))#创建一个17行1列的元素全为1的二维数组
    Z=np.c_[X,col]
    print(Z)
    """
    t=0#迭代次数
    while t<10000:
        beta1=beta-np.linalg.inv(calpartial2(X_hat,y,beta)).dot(calpartial1(X_hat,y,beta))
        if np.linalg.norm(beta-beta1,2)<error:
            return beta1
        else:
            t=t+1
            beta=beta1

    print("超过最大迭代次数,认为不收敛!")
np.random.seed(1)
beta=np.random.rand(3,1)
Beta=LR(X,y,beta,1e-5)
print(Beta) 

输出:
在这里插入图片描述

【编程中注意的一些问题】

  1. DataSet是Pandas内的对象,决策树的构建需要用到scikit-learn。
    Pandas和Scikit-learn没有完美整合,而Numpy和scikit-learn能够很好的协同使用。
    从而现将Pandas中的值转化为Numpy,然后再配合scikit-learn工作
    numpy中的ndarray为多维数组,是numpy中最为重要也是python进行科学计算非常重要和基本的数据类型。
  2. numpy矩阵运算大全见这篇博客
    numpy中文官网:https://www.numpy.org.cn/reference/
    numpy英文官网:https://numpy.org/doc/stable/index.html/

    特别注意矩阵乘法:ndarray 是 NumPy 的基础元素,NumPy 又主要是用来进行矩阵运算的.首先,在矩阵用 ±*/ 这些常规操作符操作的时候,是对元素进行操作。这和其他诸如 MATLAB 等语言不一样。 ∗ * 并没有进行矩阵乘法,而是矩阵和矩阵的元素进行了相乘。想要进行矩阵乘法计算,需要用dot方法
  3. numpy.dot()用法:
  • numpy.dot()如果处理的是一维数组,则代表向量点积,并且结果与两个参数的位置顺序无关
a1=np.array([1,2,3])
b1=np.array([2,2,2])
print(a1.shape,b1.shape)#(3,) (3,)
print(np.dot(a1,b1),np.dot(b1,a1))#12 12
  • numpy.dot()如果处理的是二维数组(矩阵),则代表矩阵乘法
a2=np.arange(3,6,1).reshape(1,3)
print(a2,a2.shape)#[[3,4,5]] (1,3)
b2=np.array([[2,4,6]])
print(b2.shape)#(1,3)
#print(np.dot(b2,a2))#报错
c2=b2.reshape(3,1)
print(c2,c2.shape)
"""
[[2]
 [4]
 [6]] (3,1)
"""
print(np.dot(c2,a2),np.dot(a2,c2))
"""
[[ 6  8 10]
 [12 16 20]
 [18 24 30]] [[52]]
"""
  1. 标量p与二维数组A相乘时,直接使用p*A
  2. 向量与二维数组做运算时,不能直接使用numpy.dot()
#解决(3,1)和(3,)在做矩阵积的时候维度不匹配的问题
np.random.seed(1)
a=np.random.randint(1,10,size=(3,1))
print(a.shape)
b=np.append(X[5],[1],0)
print(b)
c=b.reshape(1,3)
print(c)
print(np.dot(a,c))

线性判别分析

线性判别的思想非常朴素:给定训练样例集,设法将样例投影到一条直线上,使得同类样例的投影点尽可能接近,异样样例的投影点尽可能远离;在对新样本进行分类时,将其投影到同样的直线上,再根据投影点的位置来确定新样本的类别。
在这里插入图片描述
理论推导过程:

数据集: D = { ( x i , y i ) } i = 1 m , y i ∈ { 0 , 1 } , x i ∈ R d D=\{(x_i,y_i)\}_{i=1}^m,y_i\in\{0,1\},x_i\in R^d D={(xi,yi)}i=1m,yi{0,1},xiRd

X 0 = { x i ∣ y i = 0 } , X 1 = { x i ∣ y i = 1 } X_0=\{x_i|y_i=0\},X_1=\{x_i|y_i=1\} X0={xiyi=0},X1={xiyi=1}

X i ( i = 0 , 1 ) X_i(i=0,1) Xi(i=0,1)中的样例数量为 n i , n 0 + n 1 = m n_i,n_0+n_1=m ni,n0+n1=m,均值向量为 μ i = ∑ x ∈ X i x \mu_i=\sum_{x\in X_i}x μi=xXix,协方差矩阵 Σ i = 1 n i ∑ x j ∈ X i ( x j − μ i ) ( x j − μ i ) T \Sigma_i=\frac{1}{n_i}\sum_{x_j\in X_i}{(x_j-\mu_i)(x_j-\mu_i)^T} Σi=ni1xjXi(xjμi)(xjμi)T
在这里插入图片描述

向量x在向量w上的投影 a ( a ∈ R ) a(a\in R) a(aR) a = ∣ x ∣ c o s α = ∣ ω ∣ ∣ x ∣ c o s α ∣ o m e g a ∣ = ω T x ∣ ω ∣ a=|x|cos\alpha=\frac{|\omega||x|cos\alpha}{|omega|}=\frac{\omega^Tx}{|\omega|} a=xcosα=omegaω∣∣xcosα=ωωTx
则对应的投影向量为 a ω ∣ ω ∣ = ω T x ∣ ω ∣ ω ∣ ω ∣ = ω T x ω ω T ω a\frac{\omega}{|\omega|}=\frac{\omega^Tx}{|\omega|}\frac{\omega}{|\omega|}=\frac{\omega^Tx\omega}{\omega^T\omega} aωω=ωωTxωω=ωTωωTxω
容易证明, X i X_i Xi中样例在 ω \omega ω上投影的均值= X i X_i Xi中样例的均值向量在 ω \omega ω上的投影,即 1 n i ∑ x j ∈ X i ω T x j = ω T ( 1 n i ∑ x j ∈ X i x j ) = ω T μ i \frac{1}{n_i}\sum_{x_j\in X_i}\omega^Tx_j=\omega^T(\frac{1}{n_i}\sum_{x_j\in X_i}x_j)=\omega^T\mu_i ni1xjXiωTxj=ωT(ni1xjXixj)=ωTμi
从而将两类样本投影到向量 ω \omega ω上,则两类样本投影点的中心分别为 ω T μ 0 ( μ 0 T ω ) \omega^T\mu_0(\mu_0^T\omega) ωTμ0(μ0Tω) ω T μ 1 ( μ 1 T ω ) \omega^T\mu_1(\mu_1^T\omega) ωTμ1(μ1Tω)
两类样本点投影的协方差分别为 X 0 : 1 n 0 ∑ x j ∈ X 0 ( ω T x j − ω T μ 0 ) ( ω T x j − ω T μ 0 ) T 【协方差的计算公式之一】 = 1 n 0 ∑ x j ∈ X 0 ω T ( x i − μ 0 ) ( x i − μ 0 ) T ω = ω T ( 1 n 0 ∑ x j ∈ X 0 ( x i − μ 0 ) ( x i − μ 0 ) T ) ω = ω T Σ 0 ω X 1 : ω T Σ 1 ω 【同理】 \begin{aligned} X_0&:\frac{1}{n_0}\sum_{x_j\in X_0}{(\omega^Tx_j-\omega^T\mu_0)(\omega^Tx_j-\omega^T\mu_0)^T}【协方差的计算公式之一】\\ &=\frac{1}{n_0}\sum_{x_j\in X_0}{\omega^T(x_i-\mu_0)(x_i-\mu_0)^T\omega}\\ &=\omega^T\left(\frac{1}{n_0}\sum_{x_j\in X_0}{(x_i-\mu_0)(x_i-\mu_0)^T}\right)\omega\\ &=\omega^T\Sigma_0\omega\\ X_1&:\omega^T\Sigma_1\omega【同理】 \end{aligned} X0X1:n01xjX0(ωTxjωTμ0)(ωTxjωTμ0)T【协方差的计算公式之一】=n01xjX0ωT(xiμ0)(xiμ0)Tω=ωT n01xjX0(xiμ0)(xiμ0)T ω=ωTΣ0ω:ωTΣ1ω【同理】

欲使同类样本点的投影点尽可能接近,可以让同类样例投影点的协方差尽可能小,即 ω T Σ 0 ω + ω T Σ 1 ω \omega^T\Sigma_0\omega+\omega^T\Sigma_1\omega ωTΣ0ω+ωTΣ1ω尽可能小;欲使异类样本的投影点尽可能远离,可以让异类样本点投影后的中心之间的距离尽可能的大,即 ∣ ∣ ω T μ 0 − ω T μ 1 ∣ ∣ 2 2 {||\omega^T\mu_0-\omega^T\mu_1||}_2^2 ∣∣ωTμ0ωTμ1∣∣22尽可能大。 同时考虑二者,可以得到优化目标: J ( ω ) = ∣ ∣ ω T μ 0 − ω T μ 1 ∣ ∣ 2 2 ω T Σ 0 ω + ω T Σ 1 ω = ω T ( μ 0 − μ 1 ) ( μ 0 − μ 1 ) T ω ω T ( Σ 0 + Σ 1 ) ω \begin{aligned} J(\omega)&=\frac{{||\omega^T\mu_0-\omega^T\mu_1||}_2^2}{\omega^T\Sigma_0\omega+\omega^T\Sigma_1\omega}\\ &=\frac{\omega^T(\mu_0-\mu_1)(\mu_0-\mu_1)^T\omega}{\omega^T(\Sigma_0+\Sigma_1)\omega} \end{aligned} J(ω)=ωTΣ0ω+ωTΣ1ω∣∣ωTμ0ωTμ1∣∣22=ωT(Σ0+Σ1)ωωT(μ0μ1)(μ0μ1)Tω
定义类内散度矩阵 S ω S_{\omega} Sω(与 ω \omega ω无关)
S ω = Σ 0 + Σ 1 S_{\omega}=\Sigma_0+\Sigma_1 Sω=Σ0+Σ1
类间散度矩阵 S b S_b Sb(与 ω \omega ω无关)
S b = ( μ 0 − μ 1 ) ( μ 0 − μ 1 ) T S_b=(\mu_0-\mu_1)(\mu_0-\mu_1)^T Sb=(μ0μ1)(μ0μ1)T
此时优化目标可重写为 J ( ω ) = ω T S b ω ω T S ω ω J(\omega)=\frac{\omega^TS_b\omega}{\omega^TS_{\omega}\omega} J(ω)=ωTSωωωTSbω,即 S b S_b Sb S ω S_{\omega} Sω的“广义瑞利商”。

ω \omega ω的确定:
分子分母都是关于 ω \omega ω的二次项,因此J与 ω \omega ω的长度无关 J ( ω ) = ( ω ∣ ω ∣ ) T S b ( ω ∣ ω ∣ ) ( ω ∣ ω ∣ ) T S ω ( ω ∣ ω ∣ ) J(\omega)=\frac{\left(\frac{\omega}{|\omega|}\right)^TS_b\left(\frac{\omega}{|\omega|}\right)}{\left(\frac{\omega}{|\omega|}\right)^TS_{\omega}\left(\frac{\omega}{|\omega|}\right)} J(ω)=(ωω)TSω(ωω)(ωω)TSb(ωω),只与 ω \omega ω的方向有关。不是一般性,令 ω T S ω ω = 1 \omega^TS_{\omega}\omega=1 ωTSωω=1,则LDA的优化目标等价于 m i n ω − ω T S b ω s . t . ω T S ω ω = 1 \begin{aligned} min_{\omega}\quad -\omega^TS_b\omega\\ s.t.\quad \omega^TS_{\omega}\omega=1 \end{aligned} minωωTSbωs.t.ωTSωω=1

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

奇迹luanluan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值