计数dp?
i-----j
k=j-i+1
思路:最右边的-可有选择k,根据这个选择的排列靠左边那一个会有k,k-1…1种选择,从这个思路出发,我们把-的个数抽象为进行轮数,我们可以认为当-个数为1时,有一个k,它的贡献就是数量乘k,到第二轮的时候会有1个k(k的数量总是1),1个k-1…1个1,我们用它们的数量乘本身可得到第二轮答案,到这里,答案很明显了,我们只要算出第b轮1到k的数量即可,实际上我们k从什么开始也会影响答案,这里用一个dp[i][n][k]表示从i(最大可选择的数)开始进行到n轮时数k的个数,这一轮数k的个数是上一轮的个数加上上一轮比k大的数的个数总和。
ll dp[10][N][10],sum=0;
void init() {
for(int i=1;i<=9;i++) {
dp[i][1][i]=1;
for(int j=2;j<=100000;j++) {
sum=0;
for(int k=i;k>=1;k--) {
dp[i][j][k]=(dp[i][j-1][k]+sum)%mod;
sum+=dp[i][j-1][k];
}
}
}
}
int main() {
ios_base::sync_with_stdio(false);cin.tie(0);cout.tie(0);
//ifstream s("input.txt");
//ofstream c("output.txt");
init();
//debug(dp[3][2][1]);
cin>>tt;
while(tt--) {
cin>>n;
string s;
cin>>s;
int pre=0;
bool flag=false;
rep(i,0,n-1) {
if(s[i]=='-') continue;
int x=s[i]-'0';
if(pre>x) { flag=true;break; }
pre=x;
}
if(flag) {
cout<<0<<'\n';
continue;
}
ll ans=1;
int l=1,r=9,d=0;
rep(i,0,n-1) {
//debug(0);
if(s[i]=='-') {
d++;
continue;
}
if(d==0) l=(s[i]-'0');
else {
//debug(d);
r=(s[i]-'0');
int k=r-l+1;
ll res=0;
for(int j=1;j<=k;j++) {
res=(res+dp[k][d][j]*j)%mod;
}
ans=(ans*res)%mod;
l=r;
d=0;
}
}
if(d!=0) {
int k=9-l+1;
ll res=0;
for(int j=1;j<=k;j++) {
res=(res+dp[k][d][j]*j)%mod;
}
ans=(ans*res)%mod;
}
cout<<ans<<'\n';
}
return 0;
}